Challenges in integrating renewable energy into electricity industries

Hugh Outhred
Email: h.outhred@unsw.edu.au
ISES-AP 2008, 27/11/08

Energy service delivery in the stationary energy sector (a complex technological system)

Primary energy forms e.g: coal, gas, nuclear, renewable

The electricity supply industry
- generation
- transmission
- distribution

The natural gas supply industry
- treatment
- transmission
- distribution

Equipment providers

End-use equipment delivering energy services e.g: light, heat, motive power

Energy losses & external impacts

Continuous energy flow

Hugh Outhred, Managing electricity industries with high levels of PV
Features of wind & solar energy fluxes

- Non-storable, stochastic primary energy fluxes:
 - Not available when wind or insolation low
- Generation type & size:
 - Wind & solar thermal electric: large & free-standing
 - Solar PV: small, building-integrated, electronic interface
- Can possibly contribute to:
 - Local voltage & waveform control
 - System security management
 - Subject to rating, fault ride-through capability & coordination between multiple generating units

UK wind capacity factor as function of:
1. Season & time of day (right)
2. Load level (below)
(National Grid, Winter Outlook 2008/9)
The Role of PV in Smart Grids

The Art of Knowing and Doing
The study of technology concerns what things are made and how things are made. Technology, from the Greek science of (practical) arts, has both a material and an immaterial aspect.

Technology = Hardware + Software + "Orgware"

Hardware: Manufactured objects (artifacts)
Software: Knowledge required to design, manufacture, and use technology hardware
"Orgware": Institutional settings and rules for the generation of technological knowledge and for the use of technologies

Technology's most important characteristic: Continuous change >>

Scope of the National Electricity Market

Market regions:
• Queensland
• New South Wales & ACT
• Victoria
• South Australia
• Tasmania

NEM regions are on state borders, generation/load zones are joined by national transmission flow paths (NTFPs)
Decision-making framework for a restructured electricity industry (EI)

| Governance regime | ▪ Formal institutions, legislation & policies
	▪ *Informal social context including politics*
Security regime	▪ Responsible for core integrity on local or industry-wide basis, with power to override
Technical regime	▪ Engineering design to allow industry components to function as single, industry-wide machine when connected together
Commercial regime	▪ Decentralised decision-making according to commercial criteria within a market context
	▪ Includes formally designed markets
	▪ *Needs adequate competitive pressures*

Technical regime

- **Objective:** “plug & play” capability for the millions generation, network & end-use “components” of an electricity industry “machine”:
 - Implemented through design rules & operating guidelines
- **Connection requirements:**
 - Technical performance standards
- **Operation requirements:**
 - Fault-ride through, centralised control if/when required
Commercial regime

- **Objective:** *economic operation of existing resources & investment in new resources:*
 - Requires effective coordination of decentralised decisions
- **Operation of existing resources (commitment & dispatch):**
 - Requires effective & efficient spot & ancillary service markets
- **Investment in new resources (resource adequacy):**
 - Requires efficient & effective derivative markets

Security regime

- **Objective:** *Continuity of end-use energy service delivery subject to willingness to pay:*
 - Requires an ability to maintain electrical energy flow
- **Short-term security:**
 - Power system operator interventions to maintain power system within secure operating envelope
 - Requires capability & protocols
- **Long-term security (resource adequacy):**
 - Investment in appropriate generation, network & demand-side resources, considering primary resource availability & direct & indirect costs
The Role of PV in Smart Grids

Hugh Outhred, Managing electricity industries with high levels of PV penetration

Security & commercial regimes (global & local)

- Unreachable or unacceptable futures
- Present state
- Secure operating limits (probabilistic)
- Renewable energy increases future uncertainty but forecasts can help
- Emergency control
- Time
- Growing uncertainty

Commercial regime: Possible futures managed by decentralised decisions

Security regime: Possible futures managed by centralised decisions

The Australian National Electricity Market (NEM)

- Generation Sector: Large generators
 - Gen 1
 - Gen 2
 - Gen 3
 - Gen X
- Multi-region National Electricity (spot) Market (NEM)
- Financial instrument & REC (emission) trading
- Intentions offers & payments
- Tx network pricing
- Transmission Sector
- NSW, Victoria, South Aust., Queensland, & Tasmania
- Distribution Sector
- Retail Markets
- Embedded generators
- Contestable end-users
- Franchise End-users
- End-use sector
- End-use Equipment & Distributed resources
- Retail sector: Retailer 1, Retailer 2, Retailer 3, Retailer Y
- Retailer 1: Distributor 1, Distributor 2, Distributor Y
- Distributor 1: Network access

Hugh Outhred, Prospects for wind energy in Australia
The Role of PV in Smart Grids

Hugh Outhred, Managing electricity industries with high levels of PV penetration

NEM commercial & security processes

Australian Wind Energy Forecasting System (AWEFS) now integrated into these processes

- **Medium Term (MT) PASA**
- **Short Term (ST) PASA**
- **Now**
- **5 min dispatch & pricing (4 sec AGC, online security processes)**
- **5 min predisp.**
- **Upto 40 hr ahead, 30 min res. 30 min update**
- **1 wk ahead, 30 min res., 2 hr update**
- **Upto 2 yr ahead, 1 day (MD) res., 1 wk update**
- **10 yr ahead, 1 yr update**

Capability & protocols for wind energy & security management in the NEM

- **Australian Wind Energy Forecasting System:**
 - Procured & operated by NEMMCO
 - Produces forecasts from 5 minutes to 2 years & beyond
 - Has potential to forecast solar energy as well as wind

- **Technical requirements for NEM wind farms:**
 - Fault ride through, voltage & waveform management
 - Semi-dispatch capability for control by NEMMCO
 - Verified simulation models

- **Security management protocols:**
 - Rules under which NEMMCO & NSP’s can intervene

Source: NEMMCO; S Thorncraft
Issues for high levels of penetration

- High penetration at the local distribution level:
 - Low diversity between converted renewable energy fluxes
 - Management issues (+/-): voltage fluctuations, flow constraints, harmonics, islanding

- High penetration at the regional transmission level:
 - Medium diversity between converted RE fluxes
 - Management issues (+/-): voltage fluctuations, flow constraints, resource mix, system security

- High penetration at the system-wide level:
 - High diversity between converted RE fluxes
 - Management issues (+/-): resource mix, system security

Wind penetration (%energy) globally & for South Australia

(Wiser & Bolinger, 2008)

Expected renewable energy penetration in South Australia

(ESIPC-SA APR, 2008)
Wind farms in South Australia (ESIPC APR, 2008)

Wind generation in South Australia, Aug 08
NEM income for SA wind & other generators

(ESIPC-SA APR 2008)

<table>
<thead>
<tr>
<th>Year</th>
<th>Volume Weighted Price for Wind Generators</th>
<th>Volume Weighted Price for Other SA Generators</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full Year ($/MWh)</td>
<td>Summer ($/MWh)</td>
</tr>
<tr>
<td>2004–05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2005-06</td>
<td>32.57</td>
<td>39.59</td>
</tr>
<tr>
<td>2006-07</td>
<td>49.69</td>
<td>51.55</td>
</tr>
<tr>
<td>YTD 2007-08</td>
<td>66.99</td>
<td>63.94</td>
</tr>
</tbody>
</table>

NEM wind penetration by state

(NEMMCO, 2008)

<table>
<thead>
<tr>
<th>Region</th>
<th>Existing</th>
<th>Committed</th>
<th>Proposed</th>
<th>Total</th>
<th>Summer(07/08)</th>
<th>Winter (07)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>742</td>
<td>128</td>
<td>650</td>
<td>1620</td>
<td>3089</td>
<td>2490</td>
</tr>
<tr>
<td>TAS</td>
<td>140</td>
<td>0</td>
<td>129</td>
<td>269</td>
<td>1428</td>
<td>1838</td>
</tr>
<tr>
<td>VIC</td>
<td>134</td>
<td>294</td>
<td>2027</td>
<td>2455</td>
<td>9380</td>
<td>7951</td>
</tr>
<tr>
<td>NSW</td>
<td>16</td>
<td>162</td>
<td>1611</td>
<td>1789</td>
<td>14140</td>
<td>13988</td>
</tr>
<tr>
<td>QLD</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>9524</td>
<td>7979</td>
</tr>
<tr>
<td>NEM</td>
<td>1044</td>
<td>584</td>
<td>4417</td>
<td>6045</td>
<td>34533</td>
<td>33570</td>
</tr>
</tbody>
</table>
The Role of PV in Smart Grids

Hugh Outhred, Managing electricity industries with high levels of PV

Low-pressure cell over southern Australia
(BoM, 2006)

Visualising possible power output of 3 wind farms (Cutler, 2008)
Conclusions

- PV penetration still small at regional & system levels
- However, capabilities & protocols & simulation models required if penetration rises
- The PV industry should be preparing for this now & commence discussions with network service providers & power system operators
The Role of PV in Smart Grids

Managing electricity industries with high levels of PV penetration

Email: h.outhred@unsw.edu.au
Many of our publications are available at:
www.ceem.unsw.edu.au