Network models for nodal pricing

© CEEM, 2007

Outline

- Alternative models of AC networks & their application in nodal electricity spot markets:
 - Transport model, DC loadflow, AC loadflow
- Illustrative three & five node examples
- Five node network for AC loadflow studies
- AC loadflow results for five node network:
 - With nodal voltage constraints
 - With nodal voltage preference bids & offers
- Discussion & conclusions
Alternative models of AC networks for electricity spot markets

- **Transport model**
 - Models real power but ignores reactive power
 - Models series losses & flow constraints
 - Assumes independent flow on each element:
 - Can be used for the near-radial NEM but not meshed networks

- **DC load flow model:**
 - Models real power but ignores reactive power
 - Models series losses & flow constraints
 - Models flow sharing between parallel elements

Alternative models of AC networks for electricity spot markets

- **AC loadflow model**
 - Models real & reactive power & nodal voltages
 - Accurate representation of network elements:
 - Series & shunt losses & reactive power
 - Thermal limits
 - Can model transformer tap-changers & reactive power resources
 - Extensive data requirements:
 - Network impedance data
 - Reactive power resources & voltage limits
Comparison of alternative models for AC networks

- Transport model (very abstract):
 - Judgement-determined parameters & constraints
 - Used in NEM to model “notional interconnectors”
- DC loadflow model (quite abstract):
 - Assumes voltage control is an ancillary service that can be de-coupled from network power flow
- AC loadflow model (least abstract):
 - Reactive power prices derived from node-voltage limits
 - Bids & offers can include voltage-value functions

Meshed networks

- A meshed network contains at least one loop:
 - At least two network elements operate in parallel
- Flows in parallel network elements are inversely proportional to element impedances:
 - Voltage drops across parallel elements are equal
- Impedance = reactance if no network losses:
 - Element resistances are then all zero
- Flow constraints can propagate through the network
Nodal spot markets: 3-node network, DC loadflow

No network flow constraints or losses

- **G1**: 1000 MW, $20/MWh
- **G2**: 1000 MW, $40/MWh
- **C3**: 900 MW

Spot market income ($/hr)
- **G1**: +18,000
- **G2**: 0
- **C3**: -18,000

Each line has:
- no losses
- equal reactance
- no flow constraints

Nodal spot markets: 3-node network, DC loadflow

One constrained link

- **G1**: 1000 MW, $20/MWh
- **G2**: 1000 MW, $40/MWh

100 MW Limit

Spot market income ($/hr)
- **G1**: +12,000
- **G2**: +12,000
- **C3**: -27,000
- **L12**: +2,000
- **L13**: +5,000
- **L23**: -4,000

Each line has:
- no losses
- equal reactance
- Line 1-2 has 100 MW flow limit
Nodal spot markets: 3-node network, DC loadflow

Constrained link disconnected

\[\text{G1: 1000 MW} \quad \text{G2: 1000 MW} \]
\[$20/MWH \quad $40/MWH \]

\[\text{900 MW} \quad 0 \quad 2 \]
\[\text{Infinite impedance} \]

\[\text{C3: 900 MW} \]

Spot market income ($/hr)
- G1: +18,000
- G2: 0
- C3: -18,000
- L12: 0
- L13: 0
- L23: 0

Each line has:
- no losses
- equal reactance
- Line 1-2 has been disconnected

Meshed network elements are mutually dependent:
- Unless they can be independently controlled
- Switching ‘weak’ elements off may even improve economic outcome (unlike radial network)

Spot market alone gives perverse incentives:
- Network earns more when flows are constrained
- Some generators may benefit from constrained network operation

DC-loadflow model doesn’t incorporate voltage-related issues
Five node example
(no line losses, DC load flow, after PJM example)

<table>
<thead>
<tr>
<th>Node</th>
<th>Generation (MW)</th>
<th>Price ($/MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100</td>
<td>15</td>
</tr>
<tr>
<td>B</td>
<td>110</td>
<td>14</td>
</tr>
<tr>
<td>C</td>
<td>520</td>
<td>30</td>
</tr>
<tr>
<td>D</td>
<td>200</td>
<td>30</td>
</tr>
<tr>
<td>E</td>
<td>600</td>
<td>10.4</td>
</tr>
</tbody>
</table>

Total dispatched generation = 900 MW = total load

Lessons from 5 node DC loadflow example

- Nodal prices for a 5 node network with a single line constraint can be computed:
 - Two marginal generators set local prices & remaining nodal prices derived from these:
 - Requires an accurate network model, including impedances & flow constraints
 - Low price at Node E ($10.4 /MWh) because a 1 MW load incr. at Node E would be met by:
 - Increasing the output of Ga2 >1MW @ $15/MWh
 - Reducing the output of Gd <1MW @ $30/MWh
 - To give a net cost of $10.4 /MWh
- DC loadflow doesn’t address voltage issues
Five-node network for illustrative studies of nodal pricing using AC loadflow model (Pamudji, UNSW, 1995)

Bid & offer data for 5 node model assuming preference-revealing behaviour (data sets A & B) (Pamudji, UNSW, 1995)
Bid & offer data sets A & B
(ignoring network effects) (Pamudji, UNSW, 1995)

Bid & offer price data for set A by node (c/kWh) (Pamudji, UNSW, 1995)
AC loadflow model with voltage constraints
(Pamudji, UNSW, 1995)

- Assumptions for this study:
 - Reactive power offer prices are always zero
 - Loads are constant power factor & independent of voltage
 - Line capacitances are modelled, but not line shunt losses
 - Node voltages must lie in the range: 0.95 ≤ V ≤ 1.05

- Examples considered
 1. Base case: unconstrained line flows, adequate generation
 2. Constrained generating capacity, unconstrained network
 3. Flow constraint on line 1 @ 0.8 pu (unconstrained 0.89pu)
 4. Binding voltage constraint, V = 0.97 @ node 5 (load pf 0.9)
 5. Increased network losses (line resistances +5%, +10%)
 6. Effects of different load power factors

Base case result (data set A) (Pamudji, UNSW, 1995)

- Values in bold indicate a marginal node
- Pr = price for real power

<table>
<thead>
<tr>
<th>Node</th>
<th>V (pu)</th>
<th>Pr (pu)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.05</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.02</td>
<td>4.14</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.81</td>
<td>0.08 + j0.24</td>
<td>L3, 0.06 + j0.18</td>
</tr>
<tr>
<td>4</td>
<td>1.03</td>
<td>4.28</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.99</td>
<td>4.33</td>
<td></td>
</tr>
</tbody>
</table>

- Gen: 1.70
- Industry benefit: 75.6
- Losses: 0.05
- Network revenue: 2.1

Additional notes:
- No1: 0.75
- No2: 0.55
- Shb: 2.0
- Sol: 0.4
- Gen: 1.70
- Industry benefit: 75.6
- Losses: 0.05
- Network revenue: 2.1

Network pricing for nodal pricing © CEEM 2007
Constrained generation (data set B) (Pamudji, UNSW, 1995)

Line 1 constrained @ 0.8 pu (0.89 unconstrained) (Pamudji, 1995)
Voltage constraint (0.9 pf loads, V ≥ 0.97 @ node 5) (Pamudji, 1995)

Nodal Active power price (c/kWh)

<table>
<thead>
<tr>
<th>Case</th>
<th>Data A</th>
<th>Data B</th>
<th>Voltage magnitude (per unit)</th>
<th>Case</th>
<th>Data A</th>
<th>Data B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>V const’d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V ≥ 0.97</td>
<td>North</td>
<td>1.05</td>
<td>0.98</td>
</tr>
<tr>
<td>North</td>
<td>4.00</td>
<td>5.53</td>
<td>4.00</td>
<td>South</td>
<td>1.00</td>
<td>1.01</td>
</tr>
<tr>
<td>South</td>
<td>4.14</td>
<td>5.72</td>
<td>5.01</td>
<td>Lake</td>
<td>0.97</td>
<td>0.98</td>
</tr>
<tr>
<td>Lake</td>
<td>4.28</td>
<td>5.90</td>
<td>4.66</td>
<td>Main</td>
<td>0.97</td>
<td>0.97</td>
</tr>
<tr>
<td>Main</td>
<td>4.30</td>
<td>5.93</td>
<td>5.12</td>
<td>Elm</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>Elm</td>
<td>4.36</td>
<td>6.02</td>
<td>5.96</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nodal Reactive power price (c/kWh)

<table>
<thead>
<tr>
<th>Case</th>
<th>Data A</th>
<th>Data B</th>
<th>Voltage magnitude (per unit)</th>
<th>Case</th>
<th>Data A</th>
<th>Data B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>V const’d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V ≥ 0.97</td>
<td>North</td>
<td>1.05</td>
<td>0.98</td>
</tr>
<tr>
<td>North</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>South</td>
<td>0.10</td>
<td>0.13</td>
</tr>
<tr>
<td>South</td>
<td>0.10</td>
<td>0.13</td>
<td>1.55</td>
<td>Lake</td>
<td>0.16</td>
<td>0.20</td>
</tr>
<tr>
<td>Lake</td>
<td>0.16</td>
<td>0.20</td>
<td>1.80</td>
<td>Main</td>
<td>0.17</td>
<td>0.22</td>
</tr>
<tr>
<td>Main</td>
<td>0.17</td>
<td>0.22</td>
<td>2.03</td>
<td>Elm</td>
<td>0.21</td>
<td>0.27</td>
</tr>
<tr>
<td>Elm</td>
<td>0.21</td>
<td>0.27</td>
<td>4.22</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Value of consumption for bid Eb2 (Voltage constrained case)

<table>
<thead>
<tr>
<th>Nodal Price</th>
<th>Active P</th>
<th>Reactive P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption</td>
<td>0.0615</td>
<td>0.0298</td>
</tr>
<tr>
<td>Value</td>
<td>0.3663</td>
<td>0.1257</td>
</tr>
<tr>
<td>(0.3663+ 0.1257)/ 0.0615 = 8.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Effect of line resistance (% of base case) on active power prices (Pamudji, UNSW, 1995)

<table>
<thead>
<tr>
<th>Price change</th>
<th>Data set A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>North</td>
</tr>
<tr>
<td>+1.0%</td>
<td></td>
</tr>
<tr>
<td>-1.0%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Price change</th>
<th>Data set B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>North</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

r = 105%

r = 110%

Note: The table and diagram are not fully transcribed due to the limitations of text-based transcription.
Summary of AC network results

- Either offers or bids can be marginal (data sets A or B)
- Line resistances cause nodal prices to differ even when network flow is not constrained
- More than one node can be marginal:
 - When network flow constraints or voltage limits restrict network arbitrage
- If reactive power is a free resource, voltages rise to reduce network series losses:
 - upper voltage constraint binds at a generator:
 - Network shunt losses not modelled

Summary of AC results (continued)

- Reactive power price >0 if no (or constrained) source at node:
 - Due to network losses, network constraints
 - Effects spread though the network (voltage is a shared resource)
- End-user’s cost includes reactive power:
 - If paying for reactive power, end-user not willing to pay as much for real power
 - Some supply side benefit goes to reactive power sources
AC loadflow with voltage-value functions
(an alternative to specifying voltage constraints)

- Outside a preferred voltage range:
 - A generator wants greater compensation
 - An end-user won’t pay as much
- bid (offer) price = [VVF]x[standard offer]
 - Where the voltage-value function (VVF) used for these studies was (Pamudji, UNSW, 1995):

 \[
 VVF = \begin{cases}
 1 + \alpha(V_{\text{min}} - V)^3 & \text{if } V < V_{\text{min}} \\
 1 & \text{if } V_{\text{min}} < V < V_{\text{max}} \\
 1 + \beta(V - V_{\text{max}})^3 & \text{if } V > V_{\text{max}}
 \end{cases}
 \]

Effect of VVF’s on bids & offers (Pamudji, UNSW, 1995)

- Bid VVF
 - (an end-user won’t pay as much outside a preferred voltage range)
- Offer VVF
 - (a generator wants greater compensation outside a preferred voltage range)
Case studies for 5-node network (Pamudji, UNSW, 1995)

- **Base case** (α = β = 50 for bids, β = 2000 for offers)
 - Line resistances 105% of ‘standard’ network data
 - Increased loads: Eb1 = 0.8 pu (0.4), Eb2 = 0.27 pu (0.2)
 - Increased generation capacity, No1 = 1.35
 - Total generation = 2.45 pu, total load = 2.12

- **Change cases for generator VVFs:**
 - No1 & No2: β = 20000
 - No1 & No2: β = 200
 - No1 & No2: V_{max} = 1.1 (from 1.05)
 - No1 & No2: V_{max} = 1.0 (from 1.05)
 - So1: V_{max} = 1.0 (from 1.05)

Case studies (continued) (Pamudji, UNSW, 1995)

- **Change cases for end-user VVFs:**
 - Eb1: α = 50000, V_{min} = 1.0 (from 0.95)
 - With variations to test interaction between Eb1 & Eb2:
 - Eb1 bid price = 7, 8, 9 c/kWh (Eb2 bid price = 8)

- **Simultaneous generator & end-user changes:**
 - Eb1: α = 50000, V_{min} = 1.0 with one of the following changes at a time:
 - No1 & No2: β = 20000; 200
 - So1: V_{max} = 1.0
 - Changes are generally in the direction of more strict voltage requirements
Results for base case & generator
VVF changes (Pamudji, UNSW, 1995)

<table>
<thead>
<tr>
<th>Base case</th>
<th>β_{north}</th>
<th>β_{north}</th>
<th>$V_{max North}$</th>
<th>$V_{max North}$</th>
<th>$V_{max South}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20000</td>
<td>200</td>
<td>1.00</td>
<td>1.10</td>
<td>1.00</td>
</tr>
<tr>
<td>North</td>
<td>4.002</td>
<td>4.001</td>
<td>4.006</td>
<td>4.024</td>
<td>4.000</td>
</tr>
<tr>
<td>Main</td>
<td>4.441</td>
<td>4.446</td>
<td>4.429</td>
<td>4.732</td>
<td>4.365</td>
</tr>
<tr>
<td>Elm</td>
<td>4.648</td>
<td>4.658</td>
<td>4.628</td>
<td>5.199</td>
<td>4.537</td>
</tr>
</tbody>
</table>

Industry results

- Gen, pu: 2.228, 2.229, 2.225, 2.241, 2.217, 2.229
- Load, pu: 2.120, 2.120, 2.120, 2.120, 2.120
- Loss, pu: 0.108, 0.109, 0.105, 0.121, 0.097, 0.109
- Ind S, k$: 108.0, 107.9, 108.1, 106.6, 108.4, 107.9

Nodal voltages (pu)

- North: 1.056, 1.052, 1.069, 1.014, 1.102, 1.055
- South: 1.010, 1.006, 1.025, 0.964, 1.060, 1.008
- Elm: 0.951, 0.946, 0.966, 0.900, 1.005, 0.948

Dispatch, pu (other bids & offers fully accepted)

- No2: 0.478, 0.479, 0.475, 0.491, 0.467, 0.479

North has a ‘price-band’ monopoly over price setting (e.g. result for $V_{max North} = 1.00$). However North is still rewarded for low β. South is still fully dispatched for $V_{max South} = 1.00$ but paid less. Loss low & surplus high when β low or V_{max} high.

Results for base case & end-user
VVF changes (Pamudji, UNSW, 1995)

<table>
<thead>
<tr>
<th>Base case</th>
<th>Eb1 bid price (c/kWh)</th>
<th>9</th>
<th>8</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nodal active power prices (c/kWh)</td>
<td>price</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North</td>
<td>4.002</td>
<td>4.418</td>
<td>4.404</td>
<td>4.277</td>
</tr>
<tr>
<td>South</td>
<td>4.262</td>
<td>5.786</td>
<td>5.748</td>
<td>5.306</td>
</tr>
<tr>
<td>Lake</td>
<td>4.406</td>
<td>5.991</td>
<td>5.952</td>
<td>5.490</td>
</tr>
<tr>
<td>Main</td>
<td>4.441</td>
<td>6.190</td>
<td>6.148</td>
<td>5.638</td>
</tr>
<tr>
<td>Elm</td>
<td>4.648</td>
<td>8.000</td>
<td>7.923</td>
<td>6.941</td>
</tr>
</tbody>
</table>

Industry results

- Gen, pu: 2.228, 2.138, 2.138, 2.078
- Load, pu: 2.120, 2.048, 2.048, 1.994
- Ind S, k$: 108.0, 100.8, 93.0, 86.0

Nodal voltages (pu)

- North: 1.056, 1.087, 1.087, 1.083
- Elm: 0.951, 0.995, 0.994, 0.995

Dispatch, pu (other bids & offers fully accepted)

- No2: 0.478, 0.388, 0.388, 0.328
- Eb1: 0.800, 0.800, 0.728, 0.674
- Eb2: 0.270, 0.198, 0.270, 0.270

Data:

- Eb1: $\alpha=50000$, $V_{min}=1.0$
- Eb2: bid price = 8 c/kWh

Two nodes are marginal

- Eb1 bid price = 9:
 - Eb2 is curtailed to increase V,
 - Elm price rises to Eb2 bid, industry surplus falls.

- Eb1 bid price = 8:
 - Eb1 is curtailed to increase V, Elm price rises, industry surplus falls.

- Eb1 bid price = 7:
 - Eb1 is curtailed to increase V, Elm price rises, industry surplus falls.
Simultaneous generator & end-user changes
(Pamudji, UNSW, 1995)

<table>
<thead>
<tr>
<th>(\beta_{\text{north}})</th>
<th>North</th>
<th>South</th>
<th>Lake</th>
<th>Main</th>
<th>Elm</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>4.080</td>
<td>4.477</td>
<td>4.619</td>
<td>4.675</td>
<td>5.102</td>
</tr>
<tr>
<td>2000</td>
<td>4.418</td>
<td>5.786</td>
<td>5.991</td>
<td>6.190</td>
<td>8.000</td>
</tr>
<tr>
<td>20000</td>
<td>4.312</td>
<td>5.841</td>
<td>6.000</td>
<td>6.232</td>
<td>8.000</td>
</tr>
<tr>
<td>200000</td>
<td>4.314</td>
<td>5.408</td>
<td>5.755</td>
<td>5.958</td>
<td>8.000</td>
</tr>
</tbody>
</table>

Nodal active power prices (c/kWh):
- North: 4.080, 4.418, 4.312, 4.314
- South: 4.477, 5.786, 5.841, 5.408
- Lake: 4.619, 5.991, 6.000, 5.755
- Main: 4.675, 6.190, 6.232, 5.958
- Elm: 5.102, 8.000, 8.237, 8.000

Industry results

<table>
<thead>
<tr>
<th>(\beta_{\text{north}})</th>
<th>North</th>
<th>South</th>
<th>Lake</th>
<th>Main</th>
<th>Elm</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>1.096</td>
<td>1.087</td>
<td>1.066</td>
<td>1.084</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>1.087</td>
<td>1.090</td>
<td>1.090</td>
<td>1.090</td>
<td></td>
</tr>
<tr>
<td>20000</td>
<td>1.078</td>
<td>1.064</td>
<td>1.056</td>
<td>1.056</td>
<td></td>
</tr>
<tr>
<td>200000</td>
<td>1.058</td>
<td>1.033</td>
<td>1.022</td>
<td>1.022</td>
<td></td>
</tr>
</tbody>
</table>

Dispatch, pu (other bids & offers fully accepted)

<table>
<thead>
<tr>
<th>(\beta_{\text{north}})</th>
<th>No2</th>
<th>Lb2</th>
<th>Eb2</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.468</td>
<td>0.150</td>
<td>0.270</td>
</tr>
<tr>
<td>2000</td>
<td>0.388</td>
<td>0.150</td>
<td>0.198</td>
</tr>
<tr>
<td>20000</td>
<td>0.030</td>
<td>0.021</td>
<td>0.165</td>
</tr>
<tr>
<td>200000</td>
<td>0.351</td>
<td>0.150</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Data:
- \(\beta_{\text{north}} = 200 \): Voltages high, Eb2 fully accepted, prices low, surplus high.
- \(\beta_{\text{north}} = 2000 \): Eb2 is curtailed to increase V, prices high, surplus low.
- \(\beta_{\text{north}} = 20000 \): Eb2 is rejected & Lb2 curtailed, prices high, surplus low.
- \(V_{\text{maxSouth}} = 1.00 \): Eb2 is curtailed to maintain V, prices high, surplus low.

Probable influences on auction outcomes:
- Not restricted to a particular node (shared network)
- Competing bids & offers correctly resolved between:
 - Generators & end-users
 - Participants at the same node
 - Participants at different nodes
 - Participants & network
Results of VVF studies (continued)
(Pamudji, UNSW, 1995)

- Appropriate incentives and rewards:
 - Except for ‘price band’ local monopoly of marginal bid/offer:
 - No pressure to reveal preferences
 - Similar results for a 53 node, 73 line model of NSW:
 - VVF requests appropriately resolved, widespread effects

Conclusions #1

- A transport model sometimes adequate:
 - Used in NEM with ‘notional interconnectors’:
 - As yet no ‘loop flow’ effects between market regions
 - Voltage control treated as an ancillary service
 - Acceptable for an initial implementation

- DC loadflow models ‘loop flow’:
 - However network flow limits difficult to incorporate as voltage effects still ignored:
 - PJM market uses DC loadflow for real power flows but AC loadflow for reactive power flows
Conclusions #2

- AC loadflow accurately models network:
 - Both voltage and current constraints
 - Series & shunt impedances of network elements
 - However constraints have commercial value:
 - VVF preferable to nodal voltage constraints:
 - Permits valuation of voltage-related ancillary services

- AC network model essential for accurate implementation of a nodal spot market:
 - However complex bids & offers then required:
 - Demand-side bids as well as supply-side offers
 - AMI to measure interval energy plus availability & quality of supply

Conclusions #3

- Accurate network models can be incorporated in nodal spot markets:
 - Commercial model then closer to physical reality

- However problems remain:
 - Network models must be more accurate
 - Bid/offer structure becomes more complex:
 - Risk management also becomes more complex
 - Network constraints will always exacerbate local market power (& constraint settings matter):
 - AMI & active end-user participation become essential

- Further study needed to assess cost/benefits
Limits to the effectiveness of nodal markets

- For a given network, more nodal markets:
 - Mean fewer participants in each nodal market:
 - Local participants & network owners gain market power
 - Ancillary services, spot energy & risk harder to price
 - Require a more accurate network model
 - There is a lower limit to the level of network detail that nodal markets can resolve

- Regional markets provide one option:
 - Place major flow constraints on region boundaries:
 - Models of “notional interconnectors” then required
 - Resolve intra-regional network flow constraints by negotiation under regulatory supervision

Many of our publications are available at:
www.ceem.unsw.edu.au