Trading Beyond Compliance: An Analysis of Electricity Firm Participation in the European Union Emissions Trading Scheme

Richard Evans

Supervisors: Regina Betz and Paul Twomey
Firm participation in an emissions trading scheme (ETS) is not limited to
compliance trading

Theoretically firms with dual goods and permit
market power have incentives to hold a sub-optimal excess of permits in certain conditions

- Free Allocation
- Low Abatement Target
- Shown in a static framework by Hintermann (2011),
 Calford, Heinzel and Betz (2010) and Eshel (2005)
How Dominant Firms Profit from Excess Holdings: Static Model

Competitive Fringe $i = 2$ to N

$$\max_{q,e,x} \prod_i = pq_i - C^i(q_i, e_i) - \sigma(x_i - \bar{x}_i)$$

$s.t. e_i \leq x_i + x_i$

$$\frac{\partial \Pi}{\partial q_i} \rightarrow p = \frac{\partial C^i}{\partial q_i}, \frac{\partial \Pi}{\partial e_i} \rightarrow \sigma = \frac{\partial C^i}{\partial e_i}$$

Familiar FOC results MCP = P, MCA = permit price

Dominant Firm $i = 1$

$$\max_{q,e,x} \prod_1 = p(q_1, x_1)q_1 - C^1(q_1, e_1) - (x_1 - \bar{x}_1)\sigma(q_1, x_1) + \lambda(x_1 - e_1)$$

$s.t. e_i \leq x_i + x_i$

$$\frac{\partial \Pi}{\partial e_i} \rightarrow -\frac{\partial C^i}{\partial e_i} = \sigma(q_1, x_1) + (x_1 - \bar{x}_1)\frac{\partial \sigma}{\partial x_1} - \frac{\partial p}{\partial x_1}q_1$$

$$\bar{x}_i = x_1 - \frac{\partial p/\partial x_1}{\partial \sigma/\partial x_1} \cdot q_1$$

Optimal Allocation for Firm 1 to achieve socially optimal permit price – Less than permit demand
What happens when we allow for Intertemporal trading and banking

Firms maximise vector of present values of profits:

\[\mathbf{p} \cdot \mathbf{q}_i - C(\mathbf{q}_i, \mathbf{e}_i) - \sigma \cdot \mathbf{x}_i \]

\[\max_{\mathbf{x}_i, \mathbf{x}_i, \mathbf{e}_i} \prod_{i}^p (\mathbf{x}_i, \mathbf{e}_i) - \sigma \cdot \mathbf{x}_i \]

Kuhn-Tucker conditions:

1) \[\frac{\partial \Pi_i^p}{\partial e_{it}} - \lambda_{it} = 0 \]
2) \[\lambda_{it, t+1} - \lambda_{it} + \mu_{it} = 0 \]
3) \[\frac{\partial \Pi_i^p}{\partial x_{it}} - \sigma_t + \lambda_{it} = 0 \]
4) \[\mu_{it} X_{i, t+1} = 0 \]

\[X_{i, t+1} \geq 0, \mu_{it} \geq 0 \]

Dominant firm sets Permit price > MAC as second term > 0

Competitive fringe firms will not bank permits when faced with non-increasing permit price

Dominant firms will bank proportionally more permits than an equivalent non-dominant firm given a declining permit price
Theoretical Results

* Only dominant firms have an incentive to bank permits between periods with a declining permit price
* This behaviour drives up the prevailing price of carbon permits
* This increases the marginal cost of production for all electricity firms (even though permits are freely allocated as holding costly permits represents an opportunity cost)
* Specifically we should expect an increase in both the goods and permit market prices
* We should also be able to observe systematic differences in the banking and holding levels between dominant and competitive-fringe firms
Market Power in the Electricity Market

Goods Market Dominance
- Concentration ratios and HHI
- Largest firms in concentrated zones
- Moderate: Spain and Germany
- High: France

Other Factors?
- Ownership structure, would a government owned firm hold excess permits to profit?
Market Power in the Permit Market (Phase I – First Year)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Firm</th>
<th>Permits Allocated</th>
<th>Total Share</th>
<th>Verified Emissions</th>
<th>Allocation Surplus / Deficit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RWE</td>
<td>145,811,862</td>
<td>6.96%</td>
<td>155,229,304</td>
<td>-9,417,442</td>
</tr>
<tr>
<td>2</td>
<td>Vattenfall</td>
<td>91,689,393</td>
<td>4.37%</td>
<td>87,645,985</td>
<td>4,043,408</td>
</tr>
<tr>
<td>3</td>
<td>E.ON</td>
<td>73,865,224</td>
<td>3.52%</td>
<td>80,578,342</td>
<td>-6,713,118</td>
</tr>
<tr>
<td>4</td>
<td>PGE Polska Grupa Energetyczna</td>
<td>59,754,900</td>
<td>2.85%</td>
<td>58,143,546</td>
<td>1,611,354</td>
</tr>
<tr>
<td>5</td>
<td>Enel</td>
<td>58,329,870</td>
<td>2.78%</td>
<td>68,042,124</td>
<td>-9,712,254</td>
</tr>
<tr>
<td>6</td>
<td>EDF</td>
<td>54,989,146</td>
<td>2.62%</td>
<td>59,033,243</td>
<td>-4,044,097</td>
</tr>
<tr>
<td>7</td>
<td>DEI</td>
<td>52,095,606</td>
<td>2.49%</td>
<td>52,587,962</td>
<td>-492,356</td>
</tr>
<tr>
<td>8</td>
<td>GDF SUEZ</td>
<td>48,344,189</td>
<td>2.31%</td>
<td>55,486,479</td>
<td>-7,142,290</td>
</tr>
<tr>
<td>9</td>
<td>CEZ</td>
<td>42,243,211</td>
<td>2.02%</td>
<td>37,494,570</td>
<td>4,748,641</td>
</tr>
<tr>
<td>10</td>
<td>Endesa</td>
<td>40,433,894</td>
<td>1.93%</td>
<td>49,352,656</td>
<td>-8,918,762</td>
</tr>
</tbody>
</table>
Permit Holdings Above Compliance:
4 Largest Electricity Firms
Permit Holdings Above Compliance Relative to Verified Emissions: 4 Largest Electricity Firms
RWE Holdings vs EUA Spot Price
Policy Implications

* Allocation plans must not only consider cap, but also distribution to firms – not previously thought to impact efficiency
* High allocation to electricity firms is supposed to negate output price rises, when in fact it may exacerbate the problem
* Full auction? – transfer of wealth from electricity generators to government
* Empirical Testing
 * Develop a good measure of market power that can be used to test dominant firms compliance levels

* Assess the relation between price movement and holdings for dominant firms
 * Test for example if RWE holding can explain EUA price variation

* Examine the pass though rates in different markets