Electricity industry restructuring overview: economic, commercial & regulatory perspectives

© CEEM, 2006

Energy service delivery in the stationary energy sector

The electricity supply industry
- generation
- transmission
- distribution

The natural gas supply industry
- treatment
- transmission
- distribution

Equipment providers

end-use equipment delivering energy services eg: light, heat, motive power

energy losses & external impacts

Comparison of car & electricity industries

Cars
- Can be touched seen, & stored, last for years
- Consumer choice promotes competition:
 - Each consumer can buy a specific car
 - Each manufacturer can control product quality
- Spatial separation of buyer & seller not a serious issue
 Bilateral trade works well:
- Can use normal commercial framework

Electricity
- Intermediate energy form: invisible, ephemeral, fungible - a flow industry
- A consumer receives a mixed flow of energy from all power stations:
 - A consumer can’t choose a power station
 - A power station can’t control quality of delivered energy at another location
- Location matters because of network losses & constraints - the key issue is:
 - Continuity & quality of flow of electrical energy arriving at end-use equipment
 Bilateral trade does NOT work well:
- Must design & implement an industry framework that works for electricity

Infrastructure industries

- A definition of infrastructure:
 - Essential elements forming the basis of a system
- Examples of infrastructure industries:
 - Communications, electricity, gas, water, transport
 - Provide inputs to products or services
 - Often capital intensive with long investment lead times & asset lives
- An infrastructure industry is essential (to a product or service) if:
 - A particular product/service can’t be made without it
 - No alternative product/service can be made without it
"Natural monopoly" industries

- Definition:
 - Most efficient if production undertaken by a single firm to meet demand when price = SRMC
 - Always true for "increasing returns to scale", ie average cost decreases as production increases
- Some infrastructure industries may be both essential & natural monopolies, eg:
 - Electricity transmission and/or distribution networks
- However, electricity generation & end-use are not natural monopolies

Traditional models for infrastructure industries: *centralised decision-making*

- Britain, Australia, etc:
 - Statutory authorities supervised by a Minister:
 - Usually vertically integrated monopolies
 - Decision making political, "behind closed doors":
 - Politicians negotiate tradeoffs
- USA (in some cases):
 - Regulated private monopolies
 - Politically appointed regulatory boards
 - Formal public hearings

Electricity industry restructuring objective: *decentralised decision making*

- Improve economic efficiency by facilitating competition & new entry, which assumes:
 - Effective markets & sound legal & policy frameworks
- Enhance accountability to end-users & society through 'customer choice', which assumes:
 - End-users become active participants in the industry
 - End-users are independent agents who make "informed" decisions & efficiently manage the associated risks:
- Implement a market-based approach to social & environmental externalities:
 - Assumes political will to regulate non-monetary impacts
- Release government funds by asset sales:
 - Creates a moral hazard for politicians

<table>
<thead>
<tr>
<th>Parliamentary control</th>
<th>Accountable to a Minister</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managerialism</td>
<td>External control strategic rather than detailed</td>
</tr>
<tr>
<td>Judicial & quasi-judicial review</td>
<td>Formal, reviewable decision-making</td>
</tr>
<tr>
<td>Constituency relationships</td>
<td>Public hearings; advisory bodies; ombudsmen</td>
</tr>
<tr>
<td>Market processes</td>
<td>Requires meaningful consumer choice</td>
</tr>
</tbody>
</table>
The broader context of sustainability that electricity industry restructuring should address (IPCC COP7)

Engineering criteria must also be met: availability & quality of supply

Economic efficiency objectives
- **Allocative efficiency:**
 - Appropriate choice between goods & services:
 - For example, electricity versus gas
- **Technical or productive efficiency:**
 - Cheapest method to produce a good or service:
 - Best available technology & work practices
- **Dynamic efficiency (crucial in electricity industry):**
 - Support innovation & response to change:
 - R&D & technological change
 - Environmental impacts, social expectations, etc.
 - Efficiently manage both short- & long-term risks

Other drivers for change in infrastructure industries
- **Improving theoretical understanding:**
 - Imperfect regulation versus imperfect markets
 - A theory of electricity spot pricing from 1979
- **Evolving political context in western world:**
 - Emphasis on individual choice/accountability
- **Challenging conditions for central planning:**
 - Slow & uncertain growth in demand
 - Technological progress creating new options:
 - Eg metering, communications & demand-side options
 - Growing climate change concerns

Microeconomic reform
- **Objective** - to improve economic efficiency
 - Particularly challenging for infrastructure:
 - Potential for natural monopolies in essential goods & services
- **Means** - reduce barriers to competition, eg:
 - Remove monopoly franchises & introduce competition
 - Break-up large state-owned enterprises
 - Privatise state-owned enterprises
 - Improve strategies for industry regulation
- **Assumptions:**
 - The key public interest issue is economic efficiency
 - The best mechanism is competition
 - Participants act as profit-maximising economic agents
 - Sound legal framework in which restructuring can occur
Evolution of competition policy in Australia

- Development of COAG process in late 80's
 - Formal interface between federal & state governments may foster rational policy development
- National Competition Policy, 1993 Hilmer Rpt:
 - Facilitate competition where effective & pro-competitive regulation where not
 - Treat public & private firms equally
 - Apply universal & uniform market rules of conduct
 - Specific codes only if shown to be in the public interest
 - Develop access regimes for essential facilities

Evolution of competition policy in Australia: Competition Reform Act, 1995

- Amended Trade Practices Act, encompassed Prices Surveillance Act
- Established Australian Competition & Consumer Commission (ACCC):
 - Neutral, economy-wide, open process
 - Decisions can be appealed to Aust. Competition Tribunal
- Implements the principles of competition policy
 - Assumes primary public interest is in economic efficiency and other objectives are secondary
 - Assumes civil society, equity, etc.

The electricity industry restructuring process

<table>
<thead>
<tr>
<th>Issue</th>
<th>Transition</th>
<th>Key challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry structure</td>
<td>From monopoly
To competing firms Plus system operator(s)</td>
<td>Cultural change; Adequate competition; legal framework Accountability</td>
</tr>
<tr>
<td>Commercial framework</td>
<td>From cost recovery
To market prices</td>
<td>Market power; legal framework
Market design fidelity; Accountability</td>
</tr>
<tr>
<td>Industry regulation</td>
<td>From Rate of Return
To Incentive Regulation</td>
<td>Multiple objectives; Measuring outcomes; Accountability</td>
</tr>
<tr>
<td>Sustainability</td>
<td>From direct cost
To full costs</td>
<td>Variable RE energy flows End-user participation; Accountability</td>
</tr>
</tbody>
</table>

Key issues in the design of a fully restructured electricity industry

- Particular characteristics of electrical energy:
 - A flow industry with short-term uncertainty in, & shared responsibility for, location-specific availability & quality
- Inherent market incompleteness & inefficiency:
 - Temporal & locational averaging; important externalities
 - Imbalance between large & small participants; gaming
 - Long-term risks due to asset longevity & capital intensity
 - Large environmental externalities
- Inevitable residual centralised decision making by:
 - Policy makers, Regulators, System operators, Network Service Providers
- Unavoidable interaction between:
 - Cooperative (centralised) decision making and
 - Competitive (decentralised) decision making
Decision-making regimes for an electricity industry

- **Governance regime**: Formal institutions, legislation, policies & regulation. Informal social contexts that influence decision-making.

- **Commercial regime**: Formally designed electricity markets & regulated pricing arrangements. Informal markets that interface to the industry - e.g. primary energy, equipment, buildings, land.

- **Technical regime**: The set of engineering rules that allow components of an electricity industry, when connected together, to function as a single machine.

- **Security regime**: The task, assigned to one or system operators, of maintaining the integrity of a local or system-wide core of a power system against large disturbances.

Models of the electricity industry

- **Physical reality**, e.g. for electricity:
 - Instantaneous voltages, currents & power flows

- **Engineering models** (a typical example):
 - Balanced 3 phase sinusoidal voltages & currents

- **Main commercial models** (typical examples):
 - Spot & forward markets; network access regime:
 - Designed to elicit economically efficient behaviour
 - Ancillary services to manage mismatches:
 - Between main commercial models & physical reality

- **Policy & regulatory framework** for the industry:
 - Societal objectives & behavioural norms

Trading in electricity: an abstraction from reality

- **Main commercial markets** (humans; individual; abstract)
 - Economic models (humans; collective; abstract)
 - Engineering models (equipment; collective; abstract)
 - Physical electricity industry (equipment; collective; concrete)

- **Externalities**

- **Ancillary services & Regulation (centralised)**

An electricity trading framework

- **Primary energy markets**
- **Wholesale Market region**
- **Retail Market 1**
- **Retail Market 3**
- **Transmission network**
- **Distribution network**
- **Distribution network**
- **Distribution network**

- Large generators
- Large consumer
- Most consumers
- Embedded generators
- Small consumers, embedded generators & storage should be supported by energy service advisers

- Wholesale & retail market designs should be compatible
- Both should include network models
Some insights from electricity pricing theory #1: temporal issues in pricing

- A single owner of an electricity industry:
 - Could maximise Industry Benefits of Trade (IBOT):
 - if all supply costs & all demand side benefits were known
- Optimal prices in a decentralised industry:
 - That set of prices that achieves the same IBOT:
 - The incremental cost or loss of benefit of delivering an additional unit of energy at a particular location at a particular time
 - Standard SRMC definition if no inter-temporal links:
 - Location-specific; time-specific; may be set by loss of benefit (value)
 - Otherwise a set of prices that reflect future decision options:
 - Based on best available model of future price behaviour, including impacts of a specific decision on future prices

Some insights from electricity pricing theory #2: spatial issues in pricing

- A single owner of an electricity industry:
 - Could maximise IBOT taking into account:
 - Network losses & flow constraints
 - Security: probability & consequence of outages
- Optimal pricing policy in a decentralised industry:
 - Location-specific & time-specific spot prices based on:
 - Local supply/demand balance
 - Network arbitrage subject to losses & flow constraints
 - Location- & time-specific derivative prices based on:
 - Plausible scenarios of future generation & demand
 - Plausible scenarios of future network losses & flow constraints
 - Plausible effects of future decisions

Single owner (centralised decisions):
An engineering optimisation problem

- Given:
 - An inventory of existing & potential future generation, network & demand side electrical equipment:
 - Technical parameters, operating & capital costs, industry benefits, operating constraints
 - Uncertainties in performance, costs & benefits
 - Ability to control all generation, network & end-use equipment
- Calculate a strategy to maximise IBOT:
 - Solve a stochastic non-linear dynamic optimisation problem for operating & investment decisions in generation, network and demand side equipment

Many owners (decentralised decisions):
An economic optimisation problem

- A set of location-specific energy spot markets:
 - Each trading energy (that meets QOS criteria) at local spot price in successive short spot market intervals
- A set of location-specific derivative markets:
 - Related to future spot price expectations at that location:
 - Predict aspects of future spot market behaviour
 - Permit reallocation of risks
- Ancillary services:
 - Resources that maintain availability & quality of supply:
 - Some systemic, some location-specific
- Regulatory monitoring of strategic behaviour
Electricity market models

- **Gross pool (eg NEM):**
 - All “physical” energy traded in (nodal) spot market
 - Temporal & location risk managed jointly:
 - Ancillary services, spot & derivative markets,
 - PASA, SOO, ANTS

- **Net pool (eg UK NETA):**
 - Long term & location risk managed bilaterally:
 - Network not modelled in trading arrangements
 - Resource adequacy managed partly as a bilateral issue
 - Imbalance energy traded in “balancing market”
 - Short-term operational risk managed collectively:
 - System operator typically given 1 day’s notice of bilateral trades

Challenges for a restructured industry

- Consistency between centralised & decentralised processes:
 - **Centralised:** most ancillary services & network services; industry operation; industry design & regulation; government policy for the stationary energy industry
 - **Decentralised:** some ancillary services; spot energy & derivatives

- Sound interface between centralised & decentralised processes:
 - Clear accountabilities & “hand-overs”

- Active involvement of informed end-users:
 - Should take more responsibility for timing of demand, “resource adequacy” & sustainability

Decision making framework for the electricity industry

- **Governance decision-makers**
- **Regulators**
- **System & market operator(s)**
- **Regulated industry participants**
- **Competitive industry participants**

Managing supply-demand balance in NEM

- **Spot market, Pre-dispatch & Derivative markets**
 - Increasing uncertainty
 - **Commercial issues**
 - **Physical issues**
 - **Supply/demand projections, security & FCAS derivative markets**
 - **Frequency control ancillary service markets for period t**
 - **FCAS markets for period t+1**
 - **Spot market for period t**
 - **Spot market for period t+1**
 - **Time**
Uncertainty & risk in electricity trading

<table>
<thead>
<tr>
<th>Time scale</th>
<th>Issues</th>
<th>Mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 30 minutes</td>
<td>• Demand fluctuations</td>
<td>• Ancillary services</td>
</tr>
<tr>
<td></td>
<td>• Contingencies</td>
<td></td>
</tr>
<tr>
<td>30 minutes to several days</td>
<td>• Demand uncertainty</td>
<td>• Ex-ante spot market</td>
</tr>
<tr>
<td></td>
<td>• Inter-temporal links, eg</td>
<td>• Short term forward</td>
</tr>
<tr>
<td></td>
<td>• Unit commitment</td>
<td>market</td>
</tr>
<tr>
<td>Weeks to years - operation</td>
<td>• Inter-temporal links, eg</td>
<td>• Long term forward</td>
</tr>
<tr>
<td></td>
<td>• Retail tariff setting</td>
<td>market</td>
</tr>
<tr>
<td></td>
<td>• Hydro scheduling</td>
<td></td>
</tr>
<tr>
<td>Weeks to years $ investment</td>
<td>• Optimal investment decisions</td>
<td>• Long term forward</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Policy framework</td>
</tr>
</tbody>
</table>

Ideal spot market trading of electricity

- Use shortest spot market interval consistent with commercial decision making, e.g:
 - Half-hour trading intervals
- Specify locations at which trading occurs:
 - Use multiple locations to partly incorporate network losses & flow constraints
- Active generator & end-user participation:
 - Symmetrical bidding & market clearing price:
 - Express willingness to trade energy
 - Demand & supply side options fully equivalent
 - Allow participants to express voltage quality preferences:
 - Minimise reliance on technical ancillary services

Practical implementation

- Wholesale spot & forward market:
 - Large generators, retailers, large consumers
 - Some representation of networks in markets
- Retail spot & forward market:
 - Retailers, consumers, embedded generators:
 - In future, wholesale & retail markets might merge
- Ancillary services (wholesale & retail):
 - Hybrid engineering & commercial arrangements
- Network services:
 - Regulated access regime, administered network pricing, limited competition in some aspects

Metering and communication

- Metering:
 - Interval metering should be provided for all participants:
 - Record 30 minute energy, quality & availability
 - Provide data read-out for participant & market operator
 - Profiling not an adequate option
- Communication:
 - 30-minute energy prices sent to all participants
 - Feeder power flows monitored continuously
 - Participant 30-minute energy collected at appropriate intervals for billing purposes
Conclusions on electricity industry restructuring

- A “designer” process:
 - Industry-specific laws, codes, markets
 - A “social experiment” with risks & ethical issues

- Mix of technical, economic & policy issues:
 - Physical behaviour continuous & cooperative
 - Commercial behaviour individual & competitive
 - Balance between the two is still evolving

- Restructuring is still a learning situation:
 - No complete successes, some disastrous failures, difficult to go back to traditional model
 - Must solve commercial, technical, regulatory & institutional challenges (each aspect must function well)

Many of our publications are available at:
www.ceem.unsw.edu.au