Promotion systems for electricity from renewable energy sources – Lessons learned from EU countries

Reinhard Haas
Vienna University of Technology
1. Introduction
2. Historical developments
3. Success of strategies
4. The success story of PV
5. Effects on electricity markets
6. Conclusions
1 INTRODUCTION

CORE MOTIVATION:
Policy targets for an INCREASE of RES-E!

e.g. 2020/20/20/20 targets

RES-E directive: increase share of RES-E from 12% 1997 to 22% in 2010)
2. HISTORY

RES-E EU-27

Electricity generation [TWh/a]

1997: 12%

2009: 17%
ELECTRICITY GENERATION FROM „NEW“ RENEWABLES IN EUROPE

1997: 1%

2009: 7%
REMARK ON RES – DEPLOYMENT IN THE EU-COUNTRIES

• Since about 1997 triggered by EU-directives and EU initiatives

• Yet, specific country success stories very strongly related to national policies design!
3. SUCCESS OF STRATEGIES
SUCCESS CRITERIA FOR STRATEGIES

Major objectives:

• increase the amount of electricity from renewables and
• reduce costs!

Costs (EUR/ kW)

MW /Number of plants

Major objectives:

=efficiency

=effectiveness
PRICES OF CERTIFICATES

Italy, UK; Belgium: Continuous high level!

Sweden: Shortage in banked certificates!
LEVEL OF FEED-IN TARIFFS

![Graph showing the level of feed-in tariffs from 2002 to 2010 for AT, DE, and ES.](image-url)
SUPPORT LEVELS: COMPARISON

TRADABLE CERTIFICATES

FEED-IN TARIFFS

Value of certificate (c/kWh)

Sweden UK Belgium (average) Italy Poland Romania
EFFECTIVENESS VS COSTS

Av. 2003-2007 ---> Av. 2006-2010

Figures excl. PV, Figures for 2009/10 preliminary

Support (c/kWh)

kWh/cap/yr

AT DE ES PT CZ BE IT UK SE PL FR
METHOD OF APPROACH: STATIC COST RESOURCE CURVES

- Cheapest capacities: e.g. biomass cofiring
- More expensive capacities: e.g. small Hydro, Wind
- Predicted costs
- Uncertainty

EUR/kWh vs kWh
HOW FEED-IN TARIFFS WORK

Costs

P_{Fix}

Q_{Out}

EURO/ kWh vs. kWh
Total costs for customers

(PREMIUM) FEED-IN TARIFFS

Total costs =

Producer surplus +

Additional generation costs

EURO/kWh

Market price kWh

Target kWh

Cost curve

$P_{FIT.A}$ $P_{FIT.B}$ $P_{FIT.C}$
HOW QUOTA-BASED TRADABLE GO - CERTIFICATES WORK

EURO/kWh

P_{Zert}?

Costs

kWh

QUOTA
Total costs for customers

TRADABLE GO CERTIFICATES

Total costs = Producer surplus + Additional generation costs

Total costs for customers
TRADABLE GREEN CERTIFICATES

EURO/kWh

Producer surplus

Extra generation costs
risk premium!!!

Minimal Monetary generation costs

Market price

Total costs

kWh

Quota/Target
THE SHAPE OF THE COST CURVE EU - 27

Additional generation costs

Producer surplus

Marginal cost for RES-E

Electricity market price

Required RES-E deployment

Total costs

Additional (up to 2020) realisable potential for RES-E [TWh]

Cost-resource curve (RES-E in the EU27)
THE CASE OF SWEDEN
CONCLUSIONS (1)

• To ensure significant RES-E deployment in the long-term, it is essential to promote a broad portfolio of different technologies.

• A well-designed FIT provides RES-E deployment fastest and at lowest costs.

• Strategies with lower (financial) risk > less profit requirements > lower costs for society.

IMPROVE/OPTIMIZE THE CURRENT SYSTEMS BEFORE HARMONISING OR IMPLEMENTING MAJOR CHANGES!

• A European-wide trading system would lead to a much higher burden for European citizens than a comparable FIT for meeting the 2020/20%RES target!
4. THE SUCCESS STORY OF PHOTOVOLTAIC DEPLOYMENT (IN GERMANY)
PV increases in recent years in Europe

- Germany
- Italy
- Spain
- Czech Republic

MW/year

2005 2006 2007 2008 2009 2010 2011 2012
Total installed capacity 2011: 27.7 GW
(compared to 16.6 GW in 2010)

Source: EPIA (2012)
Costs of and FIT for PV

Costs

FIT Germany

- Germany
- Costs Germany

Cent/kWh

2005 2006 2007 2008 2009 2010 2011 2012
PV: cumulative development in Central Europe

In Germany in 2011/2012: PV contributes at peak production times to about 25% of load!
SINCE 2000: INVESTMENTS MAINLY IN RENEWABLES!

2020: ca. 25000 MW PV
5. EFFECTS OF PROMOTING RES-E ON ELECTRICITY MARKETS
LONG-TERM MARGINAL COSTS

Cheapest:
1. Nat. Gas
2. Nuclear
3. Wind

Costs (EUR/MWh)

Capital costs
Operation/Fuel costs
CO2 costs
SHORT-TERM MARGINAL COSTS

Cheapest:

1. Nuclear
2. Wind
3. Nat. gas

Costs (EUR/MWh)

Operation/Fuel costs

CO2 costs
Long-term vs short-term marginal costs

Marginal generation costs [cents/kWh]

Total costs = long-term marginal costs

$p_{\text{gas}} = 30$ cents/m3

$p_{\text{gas}} = 18$ cents/m3

short-term marginal costs
ON-PEAK NICE SUMMER DAY: PRICE = SHORT-TERM MARGINAL COSTS

What happens, if PV capacity will double?
IMPACT OF PV ON THE ELECTRICITY MARKET PRICE IN GERMANY

Photovoltaics

On-peak time: Low electricity prices!

Spot market price electricity Germany
Supply and Demand

RES Production

> Demand

Electricity price = 0
(or negative)

< Demand

Electricity price = high!
PV costs vs household electricity price in Germany
Share on household electricity prices

- Capital costs
- Operation & Labour costs
- Fuel costs
- Profits of companies

Electricity prices of households

1983 to 2006
Structure household electricity prices

Household electricity price structures 1980 - 2012 - 2030

- Fuel costs decrease
- Capital costs increase

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital costs production</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Fuel costs</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Operation costs grid & storages</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Profits</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Tax</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Legend:
- Capital costs production
- Fuel costs
- Operation costs grid & storages
- Profits
- Tax
- Capital costs grid & storages
- Operation costs production
- RE-fee
- Distribution
Share on household electricity prices

Electricity prices of households

Non-regulated share

Regulated share

[1983] [2006] [2030]
[c/kWh]
6. Conclusions

(i) well-designed (dynamic) Feed-in tariff \rightarrow certain deployment of PV fastest and at lowest costs for society \rightarrow correct dynamic design!

(ii) “Overheating” destroyed other markets (Czech Republic, Spain, Italy(?));

(iii) Loming “grid-parity” for PV? \rightarrow change to investment subsidies?

(v) New market design will emerge

(vi) New pricing mechanisms for end users

(vii) Regulated share on electricity prices will increase
INTERESTED IN FURTHER INFORMATION?

- Download reports from: www.eeg.tuwien.ac.at
- E-Mail to: Reinhard.Haas@tuwien.ac.at
THE CASE OF SWEDEN

Major characteristics:

* since 2002: quota-based system of Tradable Certificates
* also „old“ capacity allowed to fulfill quota
* additional investment subs. for wind!
SWEDEN: IMPACT OF INVESTMENT SUBSIDIES

Energy Economics Group

[Graph showing costs (Supply curve) for wind, investment subsidies for wind, and quota for Biomass.

- Wind Loc. A
- Wind Loc. B
- Costs (Supply curve)
- Invest. Subsidies for wind
- Quota

P_{\text{cert_th}}

P_{\text{cert_act}}

[Biomass]

[cent/kWh]

[GWh/year]
PRICES OF CERTIFICATES IN SWEDEN
Costs of PV in next years (EUR/kWp)

Increased competition due to modules from China

Market clearing

Over capacities