Estimating the Economic Value of Distributed PV Systems in Australia

Sebastian Oliva and Iain MacGill

IEEE PES Conference on Innovative Smart Grid Technology 2011
Perth, Australia
13-16 November 2011

www.ceem.unsw.edu.au
Presentation Outline

- Australian context for PV systems
- Economic valuation of PV_{elec} costs and benefits
- Approach to estimate PV value in Australia
- Value of a typical residential PV system in Sydney
- Conclusions and future work
Australian context for PV systems

- Challenge of electricity industry transformation to a low-carbon future.
- PV policy support basis => current energy markets do not price the adverse environmental impacts of conventional fossil-fuel generation or appropriately capture other market benefits.
- Policy support => PV deployment increases 10 times in the last 2 years.
- Assessment of PV economic value can play an important role to tailor policies that maximise the value to the society.

Emerging challenges
- Strict cost/benefits analysis of PV support
- How best to design policies to maximise PV value

Oliva and MacGill
"Estimating the Economic Value of Distributed PV Systems in Australia"
Economic valuation of PV_{elec}: costs and benefits

- Possible benefits:
 - Energy
 - Avoided Losses
 - Avoided CO_2 Emissions
 - Deferring Network Augmentation
 - Impact on Power Quality
 - Security of Supply
 - Available firm Capacity
 - Reduction Stress in the System and Wholesale Prices

Oliva and MacGill
“Estimating the Economic Value of Distributed PV Systems in Australia”
Approach to estimate PV value in Australia

- Retail tariffs are not an appropriate basis for energy value.
- Energy valuation:

\[
PV_{\text{elec}} \times w_t
\]

- \(PV_{\text{elec}}\): Photovoltaic electricity [MWh]
- \(w_t\): Wholesale spot price [$/MWh]

- Actual data capture correlation between solar output and wholesale prices.
- Limitation: Backward looking historical wholesale price data, but future prices is what matters.

Oliva and MacGill
"Estimating the Economic Value of Distributed PV Systems in Australia"
Avoided losses value

- Methodology that considers the non-linear relationship between losses and power flow in network elements:

\[L_t = a \times G_t^2 \]

Overall system losses \(L_t \)

\[\frac{dL_t}{dG_t} = 2aG_t \]

Change in systemwide losses

\[PV_{elec} \times W_t \times 2aG_t \]

- ‘a’ can be derived by combining system production data with the average losses in the system.

- Limitations: Actual losses highly context-specific and difficult to estimate accurate.

Oliva and MacGill
“Estimating the Economic Value of Distributed PV Systems in Australia”
Avoided CO$_2$ emissions value

- PV system avoids the equivalent emissions of the generating plant whose output is displaced:
 \[I_t \times C \]

 where I_t is the emission intensity of the marginal plant in tCO$_2$/MWh and C is the social costs of CO$_2$ emissions in $$/tCO_2$.

- In the NEM I_t corresponds to OCGT power plants 0.76 [tCO$_2$/MWh]

- Valuing C is highly abstracted and hence controversial
 - Control cost: materialized in a carbon price imposed on the electricity industry (Treasury estimates, IEA, etc.)
 - Damage cost: estimate arising from unchecked greenhouse emissions (Stern Review, ExternE, etc.)

Oliva and MacGill
“Estimating the Economic Value of Distributed PV Systems in Australia”
Deferring Network Augmentation Value

- Estimated savings from the deferral of particular planned network investments.
- Process undertaking by NSW DNSPs as part of their demand management obligations
- S is the financial savings per each kW of reduced peak load
- PV contribution to reduce peak load:
 - Coincidence peak factor: $A = \frac{\text{reduction of demand}}{\text{maximum solar output}}$
 - Performance of the panels: $P = \frac{\text{maximum solar output}}{\text{PV capacity}}$
- Value of deferral investments per kW of PV installed:

$$D = S \times A \times P$$

- Limitation: Deferral only at the substation level.

Oliva and MacGill
“Estimating the Economic Value of Distributed PV Systems in Australia”
Monthly P_{elec} energy and environmental value during 2010

- Data
 - Actual solar output (P_{elec}) data from 1.1 kW residential PV system for 2010.
 - Actual wholesale price (w_t) data from AEMO.

\[
P_{\text{elec}} \times \left(w_t + w_t \cdot 2aG_t + I_t \times C \right)
\]

Oliva and MacGill
"Estimating the Economic Value of Distributed PV Systems in Australia"
Deferring network augmentation value

- Use of average P_{elec} of the peak month for:

$$A = \frac{\text{Reduction of peak}}{\text{max imum solar output}}$$

$$P = \frac{\text{max imum solar output}}{\text{PV capacity}}$$
PV Systems in Sydney: Economically Beneficial?

- Compare total benefits against total costs
- Future C and scaled up w_t values obtained from the Treasury modelling
- Key assumptions:
 - OGCT plants keep being the peaking marginal plants
 - Annual degradation factor of the panels is 0.5%
 - Percentage of NEM average losses doesn’t change in the future

High correlation between PV_{elec} and w_t

Benefits > Cost => Beneficial Investment

Oliva and MacGill
“Estimating the Economic Value of Distributed PV Systems in Australia”
Conclusions and Future Work

- Estimating the societal economic costs and benefits of PV has significant potential value to policy makers.
- Value highly dependent on PV system performance, carbon price and also location.
- Need of approaches to estimate security benefits, network costs, etc.
- Further investigation is required at a more commercial level:
 - Estimate the impact of PV deployment on key stakeholder revenues and costs based on the PV value
 - Estimate the contribution that industry stakeholder should give to afford PV deployment
The authors would like to thank Simon Lewis for providing the PV output data and the funding support by Australian Solar Institute (ASI).

Thank you,

and

Questions?

s.olivahenriquez@student.unsw.edu.au

Many of our publications are available at: www.ceem.unsw.edu.au