

The I3A framework:

A diagnostic tool to assess energy service / arrangement sustainability and a design tool to design a sustainable energy service arrangement

For detailed discussion on conceptual background, see:

Retnanestri, M., 2007, The I3A Framework – Enhancing the Sustainability of Off-grid Photovoltaic Energy Service Delivery in Indonesia, PhD Thesis, Submitted to UNSW, http://primoa.library.unsw.edu.au/primo_library/libweb/tiles/lrs/unsworks/datastream.jsp?pid=UNSWorks1598

Maria Retnanestri retnanestri@ipenconclting.com; m.retnanestri@unsw.edu.au Guest Lecture, Sustainable Energy in Developing Countries, School of PV & Renewable Energy Engineering, UNSW Sydney 27 August 2012

What is I3A?

An **Implementation** that maintains RE service **Accessibility** (financing, skill, network, resources), **Availability** (reliability & security of supply) & **Acceptability** (social & ecological) considering the hardware, software & orgware aspects of RE service delivery during & beyond initial project life

A framework that is used as a **diagnostic tool** to assess energy service/arrangement sustainability or a **design tool** to design a sustainable energy service arrangement (scope: can be for country level or technology specific level)

What are the I3A objectives?

The 21 steps of the I3A model to assess energy arrangement sustainability

I3A Energy Sustainability

Implementation that maintains energy Accessibility, Availability & Acceptability in short & long runs

Implementation

Orgware & Enabling Factors

- Orgware: Stakeholders, objectives, interrelationships levels 2. Enabling factors: Policy, strategy, administration, coordination, governance
- 3. External factors: Other programs, socioeconomic. political, global situations

Accessibility

Access to Financing & Resources

- the A-P gap Access to energy financing,
- Access to energy education

- market, network
- 8. Access to energy resources

Availability

Service Reliability & Resource Security

Acceptability

Social & Ecological Improvement

- 4. Affordability-Profitability (A-P) 9. Primary resource availability 16. Utilization of local resources 10. Technical quality: Standards, (institutions, economy, norms)
- 5. Financial intervention to bridge safety, warranty 17. Attributes vs User needs
 - 11. Energy system integration 18. Socioeconomic outcomes
 - 12. Domestic manufacturing
 13. After-sales infrastructure
 14. Suitability to environment
 25. Energy waste handling
 - Local capable agent 21. Contribution to climate
 - 15. User education change mitigation effort
- → I3A covers the Institutional, Financial, Technological, Social and Ecological aspects of RE service delivery

Enhancing the sustainability of RE service delivery in 21 steps using I3A

Implementation Orgware & Enabling

- Orgware: RE stakeholders, objectives, roles, interrelationships Enabling factors: Policy, regulations, administration, governance
- 3. External factors: Other programs, socio-economic/political situations

Accessibility

Factors

Access to Financing & Resources

- Affordability Profitability (A-P) levels
- Financial intervention to bridge the Affordability Profitability gap
- 6. Access to RE financing, market, network
- Access to RE education and training for non RE specialist
- Access to RE resources

9. RE primary resources availability 10. RE technical quality: Standards, Safety & Warranties for components, system, installation, appliances

11. RE system integration

12. Domestic manufacturing

- 13. After-sales service infrastructure
- 14. Local capable agent
- 15. User education

Acceptability

Availability

Service Reliability &

Resource Security

Social & Ecological Sustainability

- 16. Utilization of local resources: Norms, institution, economy, local innovation
- 17. RE attributes & Users requirements: Advantage, complexity, compatibility, reinvention, etc
- 18. Socioeconomic outcomes: Millennium Development Goals (MDG), socioeconomic improvement
- 19. RE suitability to local physical environment
- RE waste handling
- 21. RE contribution to climate change mitigation effort

Implementation: Process of implementing a RE project Orgware: RE stakeholders, objectives, roles, interrelationships Orgware & Enabling factors: Policy, regulations, administration, governance **Enabling Factors** External factors: Other programs, socio-economic/political situations The RE Project Orgware RE RE RE **Facilitator** Users **Sponsor** Provider interests/goals: User interests/goals: Energy service/energy benefits, Governance responsibility, business goals, social goals, credibility, emission resolve problems related to reduction target, public image their energy needs Common interests/goals: Sustainable RE Service UNSW IP≶N

Availability: Assure continuity 9. RE primary resources availability; 10. RE technical quality: Standards, safety, warranties for Service Reliability & components, system, installation, appliances; 11. RE system integration; 12. Domestic Resource Security manufacturing; 13. After-sales service infrastructure; 14. Local capable agent; 15. User **KPDAC Continuum** Confirmation T1 & T2 Availability – RE technical lifetime **T1 T2 RE Project Life Beyond RE project life** Sales, installation, After-sales service, operation, maintenance, long-term management limited warranty Point prone to discontinuation UNSW IP≶N

Example of the use of I3A:

The I3A workshop in Kupang, NTT Province, Eastern Indonesia, 8/6/2010

- · Assessment of RE progress and challenges in NTT Province
- Group of mix of different stakeholders discuss, analyze & report the discussion outcomes
 - ABCG stakeholders: Academics, Business, Community and Government
- Demonstrated the use of I3A as a systematic diagnostic tool to identify RE potential and
 - Actively engaging diverse stakeholders, I3A can facilitate formation of consensus in identifying issues & formulating recommendations
 - I3A qualitative outcomes can be complemented with quantitative enquiries

Group discussion followed up with report of discussion outcomes

Outcomes of the NTT's I3A Workshop – Brief Summary

Implementation: Orgware & enabling factors

- 1. RE stakeholders: Form Forum Energi Daerah & define roles, coordination & interrelationships among RE stakeholders (ABCG Academics, Business, Community and, Government in NTT)
- Enabling factors: Relevant policy & strategies for mainstreaming RE in NTT, accessible information for all
- External factors: Complimentary factors: Existing programs and strong commitments from outside NTT to assist RE development in NTT; Competing factors: People in remote NTT are not open to external ideas for change

Accessibility: Access to Financing & Resources

- Affordability Profitability level: Poverty level in NTT is high (24% in 2010), the A-P gap is significantly high
- Financial intervention: Financing from state or regional budget, community fund, incentives for RE developers
- Access to RE financing, market, network: Collaborate with NGO, donor institutions
- Access to RE education: Community training centre, provision of RE training equipments, field laboratory, technology transfer
- Access to energy resource: Land dispute may impede RE development

Availability: Service Reliability & Resource Security

- 9. Primary resource availability: Solar resource available across NTT, wind and hydro in certain areas; resource mapping required
- 10. RE Standards, Safety, Warranties: Use of appliances complying to accepted standards; Training on Standardisation & Certification
- 11. RE system integration: Experts & training are needed
- 12. Domestic manufacturing: Maximize local content, transfer of manufacturing capacities to NTT, use of local wisdom/innovation
- 13. After-sales service infrastructure: Empower community & cooperatives to sell spare parts & provide after sales service 14. Local capable agent: Design curriculum for RE education from primary school to university level, workshop at kabupaten level
- 15. User education: Trained community group (through TOT) to train RE users; life skill training eg. RE for agriculture

Acceptability: Social & Ecological Sustainability

- 16. Utilization of local resources: Need understanding on the natural and institutional resources capacities for appropriate project design
- 17. RE attributes & Users requirements: RE equipments made more affordable, RE beyond lighting, more user friendly
- 18. Socioeconomic outcomes: RE to create jobs & welfare in NTT, RE for agricultural development important for NTT
- 19. RE suitability to local physical environment: Need understanding on the impacts of the environmental conditions to RE equipment
- 20. RE waste handling: Need understanding on the impacts of RE waste to the environment, AMDAL assessment needed
- 21. RE & GHG mitigation effort: ()

