Ancillary services and power system security in the NEM

Iain MacGill and Hugh Outhred
Centre for Energy and Environmental Markets
School of Electrical Engineering and Telecommunications
The University of New South Wales
i.macgill@unsw.edu.au
www.ceem.unsw.edu.au
Ancillary services link commercial markets with physical E1
A model of electricity trading

• Spot market energy traded as a commodity:
 – Energy (that meets QOS criteria) traded during each (short) spot market interval

• Financial instruments:
 – Related to future spot market prices:
 • Convey expectations of future spot market behaviour
 • Allow risk management

• Ancillary services:
 – To manage availability & quality of supply
Managing quality of supply

• ‘Quality of Supply’ (QOS) attributes:
 – Voltage, frequency, waveform purity, phase balance, supply availability *at each node*

• Managed by:
 – ‘Ancillary services’ (AS) in the short term:
 • Appropriate resources under automatic control
 – Projections of future supply-demand balance
 – Investments in new resources as required

• Via appropriate commercial arrangements
Indicative control capabilities

<table>
<thead>
<tr>
<th>Technology</th>
<th>Controllable?</th>
<th>Start-up time</th>
<th>Ramp-rate limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam cycle</td>
<td>Yes</td>
<td>5-24 h</td>
<td>+5%/min</td>
</tr>
<tr>
<td>CT</td>
<td>Yes</td>
<td>5 min</td>
<td>+20%/min</td>
</tr>
<tr>
<td>Hydro</td>
<td>Yes</td>
<td>1 min</td>
<td>+50%/min</td>
</tr>
<tr>
<td>Wind</td>
<td>No</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Solar</td>
<td>No</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Load</td>
<td>Yes</td>
<td>1 sec</td>
<td>100%/sec</td>
</tr>
</tbody>
</table>
Timeline for electricity trading
(requires active demand-side participation)

Financial instrument (FI) trading & spot market projections

Spot market for period t

Interactions & constraints

Spot market for period t+1

Forward-looking ancillary service (AS) “acquisition markets”

ancillary service “actuation markets” for period t

Increasing uncertainty

Spot market for period t+1

ancillary service “actuation markets” for period t+1

CEEM Training Program – EI Restructuring in Australia
AS acquisition & actuation markets

- Offers to provide ancillary services
 - Acquisition markets
 - Accepted offers
 - Outcomes from the technical forward & spot markets
 - Triggers, rewards, penalties
 - Providers of services
 - Forecasts of system operation and market conditions
 - Actuation markets
AS Acquisition market design

• Offer to provide a service:
 – Capability statement, e.g:
 • max, min & rate of change limits
 • required lead time (starting time)
 • Minimum running time
 • dependence on acceptance of spot offer
 – ‘Willingness to provide’ functions:
 • for readiness
 • for actuation
 – Valid time period of offer
AS Actuation market design

- Initialised by outcomes of AS acquisition & spot mkts:
 - Determine parameters & set points for control systems
- Acts mainly by automatic control functions, e.g:
 - Governor, voltage regulator, AGC, economic dispatch, transformer tap changers
- Same market interval as spot market
- Requirement det. by evolving system operation:
 - Notify market participants of evolving conditions in real time to enhance responsiveness
Potential for commercial trading

• Voltage, frequency, short term availability:
 √ Competition to provide services
 (technical efficiency)
 √ Willingness to pay for services
 (allocative efficiency)
 √ Transition to a spot market solution if need is prolonged

• Power system security:
 ? Market valuation of security
 ? Competition to provide services
NEM definition of ancillary services
(a wholesale market approach)

• Those services that provide for:
 – Power system security
 – Quality of supply
 – Enhanced spot trading benefits:
 • Where not provided on the basis of spot prices alone

• NEM categories of ancillary service:
 – Frequency control ancillary services (FCAS)
 – Network control ancillary services (NCAS)
 – System restart ancillary services (SRAS)
Power system security definitions
(National Electricity Code Chapter 4)

• Satisfactory operating state:
 – Frequency “normal” (49.9-50.1Hz), except for brief excursions within 49.75-50.25Hz
 – Voltage magnitudes within specified limits
 – All equipment operating within equipment rating
 – All plausible fault currents within breaker ratings

• Contingencies (equipment outages):
 – Credible, eg single generator or network element
 – Non-credible, eg multiple outages except in abnormal conditions, eg severe weather, bush fires
Power system security definitions ctd
(National Electricity Code Chapter 4)

• Secure operating state:
 – Currently in a satisfactory operating state
 – Would return to a satisfactory operating state following any single credible contingency:
 • Non-credible contingencies can sometimes become credible, eg SA-Vic Heywood double circuit trip during lightning activity

• Technical envelope:
 – Boundary surface of secure operating states:
 • Which depends on load forecasts, equipment capabilities and their current operating constraints
Power system security tasks & states
(National Electricity Code Chapter 4)

• Maintaining power system security:
 – Keep power system in a secure operating state
 – Return to a secure operating state as soon as possible
 following a non-credible contingency
 – If necessary to maintain security, shed load if frequency
 is outside the normal operating frequency excursion
 band (49.75-50.25Hz)

• Reliable operating state:
 – No load has been or is expected to be shed
 – Reserves adequate for at least next 12 weeks
NEM frequency control ancillary services

<table>
<thead>
<tr>
<th>Regulation</th>
<th>Contingency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulation Raise</td>
<td>Fast Raise and Fast Lower (Six second response to arrest the immediate frequency deviation)</td>
</tr>
<tr>
<td>Regulation Lower</td>
<td>Slow Raise and Slow Lower (Sixty second response to keep the frequency within the single contingency band)</td>
</tr>
<tr>
<td></td>
<td>Delayed Raise and Delayed Lower (Five minute response to return the frequency to the Normal Operating Band)</td>
</tr>
</tbody>
</table>

![Diagram showing 8 FCAS MW Requirements, FCAS Offers, SPD, 8 FCAS Clearing Prices, FCAS Enablement Targets]
frequency control & NEM 5-30 minute spot market

Long term (>5 min) power imbalances resolved by hybrid 5-30 minute spot market

- Offers to sell & bids to buy with ramp-rate limits
- Market clearing price & accepted quantities for each participant

Medium term (10sec - 5 min) power imbalances controlled by centralised AGC

- Frequency error
- Automatic generation control algorithm distributes raise/lower signals to AGC participants
- Power setpoints

Short-lived (<10 sec) power imbalances controlled by decentralised governors (local speed/frequency control)

- Generator with speed governor
- Generator with speed governor
- Frequency-sensitive load

Unresolved disturbances

Unresolved disturbances
NEM frequency tolerance bands

<table>
<thead>
<tr>
<th>State</th>
<th>Frequency band (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>49.85 Š 50.15 (99% of time)</td>
</tr>
<tr>
<td></td>
<td>49.75 Š 50.25 (1% of time)</td>
</tr>
<tr>
<td>Single gene rator contingen cy</td>
<td>49.5 Š 50.5</td>
</tr>
<tr>
<td>Other credible contingen cy</td>
<td>49.0 Š 51.0</td>
</tr>
<tr>
<td>Emergency</td>
<td>47.0 Š 52.0</td>
</tr>
</tbody>
</table>
Large disturbance frequency control: loss of NSW 660 MW Generator

Frequency control capability requirement = R

Maximum Power Input = 630 MW (nett of unit auxiliary load)

- 50.0 Hz
- 49.9 Hz
- 49.5 Hz

Maintain frequency in tolerance band > 49.5 Hz by local governor action

- \(R_{6s} \) (raise) = 430 MW
- \(R_{5m} \) (raise) = 630 MW less any load shedding included in 6 sec response which has not been restored

Return to normal frequency band >49.9 Hz within 5 min by AGC

CEEM Training Program – EI Restructuring in Australia
Indicative AS response to a unit outage

- 6 second response
- 60 second response
- 5 minute dispatch response
Distribution of frequency in the NEM, June 2003
(Reiability Panel Annual Report, 2002-3)
Frequency events outside the normal operating band in the NEM due to contingencies, 2002-03

Number of events

Duration outside normal operating band (seconds)

CEEM Training Program – EI Restructuring in Australia
Transgrid transformer failure at 2142, 13/8/04 causes 5 generators to trip: frequency fell to 48.9Hz, ~2100 MW load shed in NSW, Qld & Vic (also some in SA) (www.nemmco.com.au)
NEM energy revenue, 13/8/04

20 Energy Revenue (All Regions)

Fri, 13 Aug 04

NSW1 QLD1 SA1 SNOWY1 VIC1
NEM FCAS revenue 13/8/04

32 FCAS Revenue (All Services)

Fri, 13 Aug 04

- LOWER5MIN
- LOWER60SEC
- LOWER6SEC
- LOWERREG
- RAISE5MIN
- RAISE60SEC
- RAISE6SEC
- RAISEREG
Network Control Ancillary Services (NCAS)

- **Voltage control - continuous:**
 - NEC requires tap changers

- **Voltage control - contingency:**
 - Reactive power resources for planned worst case conditions
 - Emergency schemes for plausible multiple contingencies

- **Stability control**
 - NEC requires generators to install stabilisers
 - To enhance small & large disturbance stability
Network Control Ancillary Services (continued)

• Network loading contingency control:
 – To control transmission line flows
 – To permit full utilisation of transmission lines

System Re-start Ancillary Services

• Power station self-start capability
• Early restoration of supply to major cities
Power system security projections
(National Electricity Code Chapter 4)

• NEMMCO demand forecasts (indicative):
 – Daily forecasts to one week in 30 min intervals
 – Weekly forecasts to 2 years with daily profile
 – 10% probability of exceedence forecasts to be used for assessing reserve requirements

• Projected assessment of system adequacy:
 – Demand & supply-side forecasts:
 • Daily projection to one week (STPASA)
 • Weekly projection to two years (MTPASA)
Power system security projections ctd
(National Electricity Code Chapter 4)

• **Statement of opportunities (SOO):**
 – Prepared annually by NEMMCO to assess future need for additional generation, demand management or network augmentation

• **Annual National Transmission Statement:**
 – Identifies major transmission flow paths
 – Projects pattern of generation & demand
 – Assesses adequacy of transmission capacity
Dispatch, Pre-dispatch, PASA, SOO & ANTS
(source: NEMMCO)

Medium Term PASA (2 yr)

Short Term PASA (1 wk)

Pre-dispatch, re-bid & final dispatch schedule

0 day 1 day 2 week 1 month 1 year 1 year 2

Statement of Opportunities (SOO) & Annual National Transmission Statement (ANTS) are intended to inform generation, demand & network investment decisions (10 year horizon, yearly update)

MT Projection of System Adequacy (PASA) is intended to inform near-term reliability assessment and reserve trader processes (2 year horizon, weekly update)