Introduction	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion

Subsidies for Renewable Energies in the Presence of Learning Effects and Market Power

Johanna Reichenbach, Till Requate

Department of Economics, University of Kiel, Germany

Centre for Energy and Environmental Markets, UNSW Public Seminar 28.04.2010

= nar

Introduction ●○○○○○	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion ○
Motivation				

Introduction ●○○○○○	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion ○
Motivation				

• Promotion of renewable energy sources has moved into the center of attention of many OECD economies' energy policy, driven by concerns over the security of energy supply, global climate change, etc.

1 = 9 Q Q

< 🗇 > < 🖃 >

Introduction ●○○○○○	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion ○
Motivation				

- Promotion of renewable energy sources has moved into the center of attention of many OECD economies' energy policy, driven by concerns over the security of energy supply, global climate change, etc.
- Instruments: quotas combined with tradable green certificates (UK, Italy, Australia), tenders (Ireland) and feed-in tariffs (Germany, Spain, Denmark)

E 900

Introduction ●○○○○○	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion ○
Motivation				

- Promotion of renewable energy sources has moved into the center of attention of many OECD economies' energy policy, driven by concerns over the security of energy supply, global climate change, etc.
- Instruments: quotas combined with tradable green certificates (UK, Italy, Australia), tenders (Ireland) and feed-in tariffs (Germany, Spain, Denmark)
- In Europe, feed-in tariffs particularly effective in promoting the rapid expansion of RES-E capacity and production

= 200

Introduction ●○○○○○	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion ○
Motivation				

- Promotion of renewable energy sources has moved into the center of attention of many OECD economies' energy policy, driven by concerns over the security of energy supply, global climate change, etc.
- Instruments: quotas combined with tradable green certificates (UK, Italy, Australia), tenders (Ireland) and feed-in tariffs (Germany, Spain, Denmark)
- In Europe, feed-in tariffs particularly effective in promoting the rapid expansion of RES-E capacity and production
- Claim: policy intervention is justified in the early stage of RES-E use to spur learning by doing and enable RES-E producers to move downwards on their learning curves, until they become competitive wrt conventional electricity producers

イロン イヨン イヨン イヨン

- E = 990

Introduction OOOOO	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion O
Motivation				

Introduction ○●○○○○	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion O
Motivation				

Figure: Development of electricity generation from renewable electricity in the EU-27 (excluding hydropower)

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへの

Introduction	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion o
Contribution	าร			

Introduction	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion
00000				
Contribut	ions			

We study first-best and second-best policies, taking account of three important features of European electricity markets:

-

= 200

Introduction	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion
00000				
Contribut	ions			

We study first-best and second-best policies, taking account of three important features of European electricity markets:

- Oligopolistic competition in the fossil fuel electricity sector
- **②** Learning by doing in the RES-E equipment industry
- **Oligopolistic competition in the RES-E equipment industry**

Introduction	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion ○
Division of t	he electricit	y network in (Germany	

Introduction	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion ○
Division of	the electricit	y network in (Germany	

Introduction 000000	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion O
Learning cu	rves for wind	d turbines and	PV modules	

Source: Grübler et al., 1999

Johanna Reichenbach, Till Requate

(ロ) (部) (注) (注) (注) (の)

Introduction 00000	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion ○
Market shar	es in the wi	nd turbine ind	ustrv	

◆□▶ ◆□▶ ◆目≯ ◆日▼ ◆○♥

Introduction ○○○○○●	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion ○
Market shar	es in the wi	nd turbine ind	ustrv	

- Six market leaders in the wind turbine industry: Vestas (Denmark), GE Wind (US), Gamesa (Spain), Enercon (Germany), Suzlon (India), Siemens (Germany) → 85% of world market in 2008
- Smaller expanding players: Sinovel (China), Acciona (Spain), Goldwind (China), Nordex (Germany)
- However, many turbine manufacturers are still mainly active in their domestic and neighboring markets → e.g. Enercon, Vestas, and Siemens supply over 50% of the German, Dutch, and UK markets, respectively

- 4月 1 4 日 1 4 日 1 日

```
Source: BTM-C, 2009
```

Introduction	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion			
	0000						
The firm	The firms: fossil fuel utilities						

・ロ> <回> <三> <三> <三> <三> <三> <三

0000	

Cost

- $K_t(k_t)$
- $K'_t(k_t) > 0, \ K''_t(k_t) > 0$

Introduction	The Model ●000	Optimal Policy	Feed-In Tariff Policy	Conclusion O
The firms:	fossil fuel	utilities		

Cost

• $K_t(k_t)$

•
$$K'_t(k_t) > 0, \ K''_t(k_t) > 0$$

Profit

•
$$\pi_t^F(k_t) = P_t(Q_t)k_t - K_t(k_t) - \tau_t k_t$$

• $P_t(Q_t)$: downwards sloping inverse demand function for electricity

◆□> ◆□> ◆三> ◆三> ●目目 のへの

- Q_t : total electricity production
- τ_t : emission tax
- *t* = 1, 2

Introduction 000000	The Model ○●○○	Optimal Policy	Feed-In Tariff Policy	Conclusion O
The firms:	RES-E gene	rators		

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Introduction	The Model ○●○○	Optimal Policy	Feed-In Tariff Policy	Conclusion O
The firms:	RES-E gene	rators		

Cost

- $C^t(q_t, \tilde{x})$ with \tilde{x} : location parameter
- $C_q^t > 0, C_{\tilde{x}}^t > 0, C_{qq}^t > 0, C_{q\tilde{x}}^t > 0, C_{\tilde{x}\tilde{x}}^t > 0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	The Model o●oo	Optimal Policy	Feed-In Tariff Policy	Conclusion ○
The firms:	RES-E gene	rators		

Cost

- $C^t(q_t, \tilde{x})$ with \tilde{x} : location parameter
- $C_q^t > 0, C_{\tilde{x}}^t > 0, C_{qq}^t > 0, C_{q\tilde{x}}^t > 0, C_{\tilde{x}\tilde{x}}^t > 0$

Profit

•
$$\pi_t^G(q_t, \tilde{x}) = P_t(Q_t)q_t - C^t(q_t, \tilde{x}) - b_t$$

- b_t : RES-E equipment price
- $Q_t = \int_0^{X_t} q_t(\tilde{x}) d\tilde{x} + mk_t$
- $P_t(Q_t)q_t(X_t) C^t(q_t, X_t) b_t = 0$: zero-profit condition

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

• X_t : marginal RES-E producer

Introduction	The Model ○○●○	Optimal Policy	Feed-In Tariff Policy	Conclusion O
The firms:	RES-E equ	upment prod	ucers	

Introduction	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion
			0000	0
The firme: DES E equipment producers				

The firms: RES-E equipment producers

Cost

- $\Gamma^{1}(y_{1}), \Gamma^{2}(y_{2}, L)$ with $L = y_{1} + (n-1)\varepsilon \tilde{y_{1}}$
- $\Gamma_{y_t}^t > 0, \ \Gamma_{y_t y_t}^t > 0, \Gamma_L^2 < 0, \ \Gamma_{y_2 L}^2 < 0, \ \Gamma_{LL}^2 > 0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	The Model ୦୦●୦	Optimal Policy	Feed-In Tariff Policy	Conclusion ○
The firms:	RES-E equip	oment produce	ers	

Cost

- $\Gamma^{1}(y_{1}), \Gamma^{2}(y_{2}, L)$ with $L = y_{1} + (n-1)\varepsilon \tilde{y_{1}}$
- $\Gamma_{v_{+}}^{t} > 0, \ \Gamma_{v_{+}v_{+}}^{t} > 0, \ \Gamma_{I}^{2} < 0, \ \Gamma_{v_{2}I}^{2} < 0, \ \Gamma_{II}^{2} > 0$

Profit

- $\pi_t^E(y_1, y_2) = [B_1(X_1) + \sigma_1]y_1 \Gamma^1(y_1) + \delta[[B_2(X_2) + \sigma_2]y_2 \Gamma^2(y_2, L)]$
- $B_t(X_t)$: inverse demand function for RES-E equipment defined by zero-profit condition of marginal RES-E generator
- $X_t = ny_t$: total number of RES-E equipment with *n* firms in the **RES-E** equipment industry
- σ_t : output subsidy
- δ : discount factor

Introduction	The Model ○○○●	Optimal Policy	Feed-In Tariff Policy	Conclusion O
Welfare				

Introduction	The Model ୦୦୦●	Optimal Policy	Feed-In Tariff Policy	Conclusion ○
Welfare				

$$W = \int_{0}^{Q_{1}} P_{1}(Q)dQ - mK_{1}(k_{1}) - \int_{0}^{X_{1}} C_{1}(q_{1},\tilde{x})d\tilde{x} - n\Gamma_{1}(y_{1}) - D_{1}(mk_{1}) + \delta \left[\int_{0}^{Q_{2}} P_{2}(Q)dQ - mK_{2}(k_{2}) - \int_{0}^{X_{2}} C_{2}(q_{2},\tilde{x})d\tilde{x} - n\Gamma_{2}(y_{2},L) - D_{2}(mk_{2})\right]$$

• Emission damage: $D_t(mk_t)$ with $D_t'(mk_t) > 0$, $D_t''(mk_t) \ge 0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Number of fossil fuel utilities: m

Introduction	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion
FOC for r	profit maxin	nization		

Introduction	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion O
FOC for r	profit maxin	nization		

Fossil fuel firms:

$$P_t(Q_t) + P'_t(Q_t)k_t - K'_t(k_t) - \tau_t = 0$$
(1)

RES-E generators:

$$P_t(Q_t) - C_q^t(q_t, \tilde{x}) = 0 \qquad \forall \tilde{x} \in [0, X_t]$$
(2)

イロト イヨト イヨト イヨト

RES-E equipment producers:

$$B_{1}(X_{1}) + B'_{1}(X_{1})y_{1} + \sigma_{1} - \Gamma^{1}_{y_{1}}(y_{1})$$

$$+\delta \Big[B'_{2}(X_{2})(n-1)\frac{\partial \tilde{y}_{2}}{\partial y_{1}} - \Gamma^{2}_{L}(y_{2},L) \Big] = 0$$

$$B_{2}(X_{2}) + B'_{2}(X_{2})y_{2} + \sigma_{2} - \Gamma^{2}_{y_{2}}(y_{2};L) = 0$$
(4)

Introduction	The Model	Optimal Policy OOOOO	Feed-In Tariff Policy	Conclusion O
FOC for v	velfare max	imization		

・ロ> <回> <三> <三> <三> <三> <三> <三

Introduction	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion
		0000		
FOC for	welfare may	imization		

Welfare:

$$W_{k_t} = P_t(Q_t) - K'_t(k_t) - D'_t(mk_t) = 0$$
(5)

$$W_{q_t} = P_t(Q_t) - C_q^t(q_t, \tilde{x}) = 0 \qquad \tilde{x} \in [0, X_t]$$
(6)

$$W_{y_1} = P_1(Q_1)q_1(X_1) - C^1(q_1, X_1) - \Gamma^1_{y_1}(y_1)$$

$$-\delta [\Gamma^2_L(y_2, L)(1 + (n-1)\varepsilon)] = 0$$
(7)

$$W_{y_2} = P_2(Q_2)q_2(X_2) - C^2(q_2, X_2) - \Gamma^2_{y_2}(y_2, L) = 0$$
 (8)

Introduction	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion O
Optimal P	olicy			

Introduction	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion O
Optimal Po	olicy			

Optimal emission tax in both periods

$$\tau_t^* = \overbrace{P_t'(Q_t^*)}^- k_t^* + \overbrace{D_t'(mk_t^*)}^+$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion O
Optimal	Policy			

Optimal emission tax in both periods

$$\tau_t^* = \overbrace{P_t'(Q_t^*)}^{-} k_t^* + \overbrace{D_t'(mk_t^*)}^{+}$$

Optimal subsidy in period 1

$$\sigma_{1}^{*} = -\overbrace{B_{1}'(X_{1}^{*})y_{1}^{*}}^{-} - \overbrace{\delta(n-1)\varepsilon\Gamma_{L}^{2}(y_{2}^{*},L^{*})}^{-} - \overbrace{\delta B_{2}'(X_{2}^{*})(n-1)\frac{\partial\tilde{y_{2}}^{*}}{\partial y_{1}}}^{+}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	The Model	Optimal Policy 00000	Feed-In Tariff Policy	Conclusion O
Optimal	Policy			

Optimal emission tax in both periods

$$\tau_t^* = \overbrace{P_t'(Q_t^*)}^{-} k_t^* + \overbrace{D_t'(mk_t^*)}^{+}$$

Optimal subsidy in period 1

$$\sigma_{1}^{*} = -\overbrace{B_{1}'(X_{1}^{*})y_{1}^{*}}^{-} - \overbrace{\delta(n-1)\varepsilon\Gamma_{L}^{2}(y_{2}^{*},L^{*})}^{-} - \overbrace{\delta B_{2}'(X_{2}^{*})(n-1)\frac{\partial\tilde{y_{2}}^{*}}{\partial y_{1}}}^{+}$$

Optimal subsidy in period 2

$$\sigma_2^* = - \overbrace{B_2'(X_2^*)y_2^*}^{\bullet}$$

◆□> ◆□> ◆三> ◆三> ●目目 のへの

Introduction	The Model	Optimal Policy ○○○●○	Feed-In Tariff Policy	Conclusion O
Optimal P	olicy			

Introduction	The Model	Optimal Policy ○○○●○	Feed-In Tariff Policy	Conclusion O
Optimal Pol	icy			

- Optimal tax in both periods corrects for marginal damage caused by pollution and the too low level of output due to oligopolistic competition in the fossil-fuel industry
- Optimal subsidy in the first period corrects for the output contraction due to oligopolistic competition, the strategic output expansion of the firms in the first period in order to shift their reaction curves outwards in the second period, and the learning spill-overs neglected by individual firms
- **Optimal subsidy in the second period** only corrects for the output contraction due to oligopolistic competition the the RES-E equipment industry

高 とう ヨン うまと

= nan

Introduction	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion ○
The impact	of market s	tructure on th	e policy instrum	ents

Introduction 000000	The Model	Optimal Policy ○○○○●	Feed-In Tariff Policy	Conclusion O
The impact	of market s	tructure on th	e policy instrum	ents

The impact of market structure in the fossil fuel industry $\frac{\partial \tau_1}{\partial m} > 0 \qquad \frac{\partial \tau_2}{\partial m} > 0 \qquad \frac{\partial \sigma_1}{\partial m} \le 0 \qquad \frac{\partial \sigma_2}{\partial m} \le 0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The impact of market structure on the policy instruments

The impact of market structure in the fossil fuel industry

$$\frac{\partial \tau_1}{\partial m} > 0 \qquad \frac{\partial \tau_2}{\partial m} > 0 \qquad \frac{\partial \sigma_1}{\partial m} \le 0 \qquad \frac{\partial \sigma_2}{\partial m} \le 0$$

The impact of market structure in the RES-E equipment industry

$$\frac{\partial \tau_1}{\partial n} < 0 \quad \frac{\partial \tau_2}{\partial n} < 0 \quad \frac{\partial \sigma_1}{\partial n} < 0 \quad \frac{\partial \sigma_2}{\partial n} < 0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	The Model	Optimal Policy	Feed-In Tariff Policy ●○○○	Conclusion ○
Feed-In T	ariffs			

Introduction	The Model	Optimal Policy	Feed-In Tariff Policy ●○○○	Conclusion O
Feed-In Tari	ffs			

- RES-E generators receive a feed-in tariff ζ_t per unit of electricity produced in each period
- Feed-in tariffs paid by the government
- Exogenous emission tax
- No subsidy in the RES-E equipment sector

Profit of RES-E generators

$$\pi_t^G(q_t, \tilde{x}, \zeta_t) = \zeta_t q_t - C^t(q_t, \tilde{x}) - b_t$$

= nan

Introduction	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion
			0000	
Consul D				

Second-Best Optimal Policy

Feed-in tariff depends on five terms:

Introduction 000000	The Model	Optimal Policy	Feed-In Tariff Policy ○●○○	Conclusion ○
Second-Best	t Optimal P	olicy		

Feed-in tariff depends on five terms:

1 $P_t(Q_t)$: electricity price in t = 1, 2

Johanna Reichenbach, Till Requate University of Kiel

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion
			0000	
Consul D				

Second-Best Optimal Policy

Feed-in tariff depends on five terms:

1
$$P_t(Q_t)$$
: electricity price in $t = 1, 2$

2 [D'_t(mk_t) - τ_t + P'_t(Q_t)k_t]: tax rate, marginal damage and the degree of market power in the fossil fuel industry in t = 1,2

◆□> ◆□> ◆三> ◆三> ●目目 のへの

Introduction	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion
			0000	
		12		

Second-Best Optimal Policy

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

▲母> ▲目> ▲目> 目目 のQQ

Introduction	The Model	Optimal Policy	Feed-In Tariff Policy ○○●○	Conclusion O
Welfare in	plications			

Introduction	The Model	Optimal Policy	Feed-In Tariff Policy ○○●○	Conclusion O
Welfare im	plications			

Table: Welfare loss of a second-best feed-in tariff policy versus the first-best policy

	Welfare (fb)	Exog. tax rate	Welfare (sb)	Welfare loss (%)
Oligopoly in the fossil-fuel industry only	143.224	$\begin{matrix} 0 \\ \frac{1}{2}\tau^* \\ \tau^* \end{matrix}$	139.052 142.526 143.224	3.0 0.05 0
Oligopoly in the fossil-fuel and RES-E equipment industries	143.224	$0\\\frac{1}{2}\tau^*\\\tau^*$	126.913 131.988 133.418	12.8 8.5 7.3

Functional forms: $P(Q_t^G, k_t) = A - B(mk_t + Q_t^G), C^t(q_t) = \frac{1}{2}c(q_t + f\tilde{x})^2, K_t(k_t) = \frac{h}{2}k_t^2, \Gamma^1(y_1) = \frac{\gamma}{2}y_1^2, \Gamma^2(y_2, L) = \frac{\gamma}{4}(y_2 - bL)^2 + \frac{\gamma}{4}y_2^2, D_t(mk_t) = \frac{d}{2}mk_t^2$

Parameter values (baseline): $A = 10, B = 0.5, h = 0.1, b = 0.1, \gamma = 0.2, c = 0.5, f = 0.5, \varepsilon = 0.5, d = 1$

(ロ) (部) (注) (注) (注) (の)

Introduction	The Model	Optimal Policy	Feed-In Tariff Policy ○○○●	Conclusion O
The impa	ct of marke	t structure on	the feed in tari	ffs

< ロ > < 回 > < 回 > < 三 > < 三 > < 三 > < 回 > < ○

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Increasing the number of firms in the RES-E equipment industry

Johanna Reichenbach, Till Requate

University of Kiel

Introduction 000000	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion •
Conclusions	and policy	recommendati	ions	

	1 1			
Introduction	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion

Conclusions and policy recommendations

• FITs for renewable electricity generators may be justified in the presence of market power and learning spill-overs, if first-best optimal policies are not available to the regulator.

伺 ト イヨト イヨト

3 3 9 9 9 9 9

Introduction	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion ●
C 1 '	1 1	1.12		

Conclusions and policy recommendations

- FITs for renewable electricity generators may be justified in the presence of market power and learning spill-overs, if first-best optimal policies are not available to the regulator.
- The welfare loss of second best FITs wrt a first best policy is considerably higher when there is imperfect competition in the RES-E equipment industry, since FITs are not very effective in internalizing pollution damage and the strategic effects in the RES-E equipment and the fossil-fuel industry.

= nan

Introduction	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion ●
C 1 '	1 1	1.12		

Conclusions and policy recommendations

- FITs for renewable electricity generators may be justified in the presence of market power and learning spill-overs, if first-best optimal policies are not available to the regulator.
- The welfare loss of second best FITs wrt a first best policy is considerably higher when there is imperfect competition in the RES-E equipment industry, since FITs are not very effective in internalizing pollution damage and the strategic effects in the RES-E equipment and the fossil-fuel industry.
- FITs should be increased in response to increasing competition in the fossil fuel industry and decreased in response to increasing competition in the RES-E equipment sector.

= 200

Introduction 000000	The Model	Optimal Policy	Feed-In Tariff Policy	Conclusion ●
Conclusions	and policy i	recommendati	ons	

- FITs for renewable electricity generators may be justified in the presence of market power and learning spill-overs, if first-best optimal policies are not available to the regulator.
 - The welfare loss of second best FITs wrt a first best policy is considerably higher when there is imperfect competition in the RES-E equipment industry, since FITs are not very effective in internalizing pollution damage and the strategic effects in the RES-E equipment and the fossil-fuel industry.
 - FITs should be increased in response to increasing competition in the fossil fuel industry and decreased in response to increasing competition in the RES-E equipment sector.
 - With imperfect competition in the RES-E equipment industry, FITs should be higher in the second than in the first period.

・ 同 ト ・ ヨ ト ・ ヨ ト

= 200

Emission taxation in imperfectly competitive markets

cf. Buchanan, 1969, Lee, 1975, Barnett, 1980

Learning-by-doing and learning spill-overs in imperfectly competitive markets

cf. Spence, 1981, Fudenberg and Tirole, 1983, Goulder and Mathai, 2000, Bramoullé and Olson, 2005, Fischer and Newell, 2008

Learning effects in the renewable energy sector

cf. Grübler et al., 1999, Hansen et al., 2003, Junginger et al., 2005, Isoard and Soria, 2001, McDonald and Schrattenholzer, 2001, van der Zwan and Rabl, 2004, Neij, 1997 and 1999

- * @ * * ほ * * ほ * ほ

$$\frac{\partial \tilde{y_2}}{\partial y_1} = \frac{\Gamma_{y_2 L}^2 (B_2' + B_2'' \tilde{y_2}) + \varepsilon [\Gamma_{\tilde{y_2} \tilde{L}}^2 \Gamma_{y_2 y_2}^2 - \Gamma_{\tilde{y_2} \tilde{L}}^2 (2B_2' + B_2'' y_2)]}{-\Gamma_{\tilde{y_2} \tilde{y_2}}^2 \Gamma_{y_2 y_2}^2 - (n+1)(B_2')^2 + \Gamma_{\tilde{y_2} \tilde{y_2}}^2 (2B_2' + B_2'' y_2) + \Gamma_{y_2 y_2}^2 (nB_2' + (n-1)B_2'' \tilde{y_2}) - (y_2 + (n-1)\tilde{y_2})B_2' B_2''}$$

- <u>∂ŷ₂</u>: Comparative statics effect of increasing output of firm 1 in the first period on output of the other firms in the second period
- \tilde{y}_2 : Output of all other turbine firms in the second period
- Assuming that the spill-over coefficient ε is not too large, by convexity of the inverse demand function this expression becomes negative. This implies that an increase in output by firm 1 in the first period has a negative effect on the output decisions of the other firms in the second period

(ロ) (部) (注) (注) (注) (の)

Second-best optimal feed-in tariffs

$$\begin{split} \zeta_{1}^{oc} &= P_{1}(Q_{1}) + [D_{1}'(mk_{1}) - \tau_{1} + P_{1}'(Q_{1})k_{1}] \frac{H_{2}m\frac{\partial k_{1}}{\partial \zeta_{1}} - H_{1}m\frac{\partial k_{1}}{\partial \zeta_{2}}}{C_{2}H_{1} - C_{1}H_{2}} \\ &- [B_{X_{1}}^{1}(X_{1},\zeta_{1})y_{1} + \delta B_{X_{2}}^{2}(X_{2},\zeta_{2})(n-1)\frac{\partial \tilde{y}_{2}}{\partial y_{1}} + \delta \Gamma_{L}^{2}(n-1)\epsilon] \frac{H_{1}n\frac{\partial y_{1}}{\partial \zeta_{2}} - H_{2}n\frac{\partial y_{1}}{\partial \zeta_{1}}}{C_{2}H_{1} - C_{1}H_{2}} \\ &+ \delta [D_{2}'(mk_{2}) - \tau_{2} + P_{2}'(Q_{2})k_{2}] \frac{H_{2}m\frac{\partial k_{2}}{\partial \zeta_{1}} - H_{1}m\frac{\partial k_{2}}{\partial \zeta_{2}}}{C_{2}H_{1} - C_{1}H_{2}} \\ &- \delta B_{X_{2}}^{2}(X_{2},\zeta_{2})y_{2} \frac{H_{1}n\frac{\partial y_{2}}{\partial \zeta_{2}} - H_{2}n\frac{\partial y_{2}}{\partial \zeta_{1}}}{C_{2}H_{1} - C_{1}H_{2}} \end{split}$$
(9)

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

where C_1 , C_2 , H_1 , and H_2 denote the reaction of green electricity production when the subsidy rate changes in a

particular period, i.e.
$$\begin{split} &C_1 = q_1(X_1) \frac{\partial X_1}{\partial \zeta_1} + \int_0^{X_1} \frac{\partial q_1(\tilde{x})}{\partial \zeta_1} d\tilde{x}, \ C_2 = q_1(X_1) \frac{\partial X_1}{\partial \zeta_2}, \\ &H_1 = q_2(X_2) \frac{\partial X_2}{\partial \zeta_1} \text{ and } H_2 = q_2(X_2) \frac{\partial X_2}{\partial \zeta_2} + \int_0^{X_2} \frac{\partial q_2(\tilde{x})}{\partial \zeta_2} d\tilde{x}. \end{split}$$

Table: Functional forms

Functional form	Description
$C_t(q_t) = \frac{1}{2}c(q_t + f\tilde{x})^2$	Cost function of the RES-E generators
$K_t(k_t) = \frac{\eta}{2}k_t^2$	Cost function of the fossil fuel firms
$\Gamma(y_1) = \frac{1}{2}y_1$ $\Gamma^2(y_2, I) = \frac{\gamma}{2}(y_2 - hI)^2 + \frac{\gamma}{2}y_2^2$	Cost function of the RES-E equipment producers in $t=1$
$D_t(mk_t) = \frac{d}{2}mk_t^2$	Pollution damage
$P_t(Q_t^G, k_t) = A - B(mk_t + Q_t^G)$	Demand function for electricity

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

The impact of market structure in the fossil fuel industry

The impact of market structure in the RES-E equipment industry

Johanna Reichenbach, Till Requate

University of Kiel