Experience with Market-Based Ancillary Services in the Australian National Electricity Market

Stuart Thorncraft, s.thorncraft@ieee.org
IEEE PES GM, Tampa Florida, USA, June 24-28 2007
www.ceem.unsw.edu.au

Outline

- brief overview of Australian National Electricity Market (NEM)
- key features & design choices of the NEM market-based ancillary service arrangements
- outcomes of the market-based ancillary services to date
- comment on strengths & weaknesses
Key Features of Australia’s NEM

- regional market model covers south-eastern states
- compulsory participation for generators >= 30MW
- 5-min regional gross pool electricity spot market LP:
 - energy pricing & dispatch (based on generation offers, demand-side bids & load forecast)
 - market-based frequency control ancillary services are simultaneously priced and ‘enabled’ for 8 service types
 - many linear security constraints
- offers and bids for energy services and ancillary services can be revised as required (effectively no gate closure)
- all prices capped at $10,000/MWh
- inputs & outputs for all market processes including 5-minute spot market are published either immediately after calculation or the following day

Experience with Market-Based Ancillary Services in the Australian NEM
Ancillary Services in the NEM

- Frequency Control Ancillary Services (FCAS)
 - maintain frequency close to 50Hz
 - market-based arrangements commenced Sept. 2001
- Network Control Ancillary Services (NCAS)
 - management of voltage magnitude & network power flows
 - non-market AS (long-term contracts)
- System Restart Ancillary Services (SRAS)
 - restart the system (or part thereof) following blackout
 - non-market AS (long-term contracts)

FCAS Responsibilities

- AEMC (Australian Energy Market Commission)
 - specifies power system frequency standards
 - assesses NEMMCO’s performance in satisfying standards
- NEMMCO (Market & System Operator)
 - maintain secure power system
 - purchase sufficient ancillary services to achieve this
 - charge cost back to market participants
 - monitor system performance & verify service delivery
- Market participants
 - deliver ancillary services if required
Experience with Market-Based Ancillary Services in the Australian NEM

Defining Frequency Control Ancillary Services (FCAS)

<table>
<thead>
<tr>
<th>Service class</th>
<th>Service name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>regulation</td>
<td>regulation raise</td>
<td>continuous correction of small freq. deviations – AGC manages it</td>
</tr>
<tr>
<td></td>
<td>regulation lower</td>
<td></td>
</tr>
<tr>
<td>contingency</td>
<td>raise 6s (fast raise)</td>
<td>arrest a large frequency deviation – governor response & under-frequency load shedding</td>
</tr>
<tr>
<td></td>
<td>lower 6s (fast lower)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>raise 60s (slow raise)</td>
<td>stabilise and commence correction of frequency following large frequency deviation</td>
</tr>
<tr>
<td></td>
<td>lower 60s (slow lower)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>raise 5m (delayed)</td>
<td>response to return the system to the normal frequency band – rapid unit loading & unloading</td>
</tr>
<tr>
<td></td>
<td>lower 5m (delayed)</td>
<td></td>
</tr>
</tbody>
</table>

- **FREQUENCY**
 - regulation (AGC)
 - fast raise / 6s raise (arrests – e.g. governor response)
 - slow raise / 60s raise (initial correction)
 - delayed raise / 5m raise (e.g. rapid unit loading)

- **normal band standards:** 49.85-50.15 for 99% time

- e.g. triggered by an unplanned generator outage (contingency)
NEM Spot Market – inputs & outputs for FCAS

- **market participants**
- **FCAS offers**
- **NEM Dispatch Engine** (LP optimization)
- **5-minutes**
- **AGC frequency regulation**
- **NEMMCO**

FCAS offers
- up to 8 FCAS MW enablement levels per resource
- regulation raise & lower MW enablements

NEM Dispatch Engine
- **FCAS MW requirements**
 - global requirements
 - local requirements

8 FCAS prices
- computed on regional basis
- using global & local requirement shadow prices
- used for FCAS spot revenues
- used in FCAS cost recovery

Setting FCAS Requirements

<table>
<thead>
<tr>
<th>Service class</th>
<th>Service name</th>
<th>Requirement setting process</th>
</tr>
</thead>
<tbody>
<tr>
<td>regulation</td>
<td>regulation raise & regulation lower</td>
<td>Set on a trial & error basis where each month the performance of the system is assessed and levels increased accordingly.</td>
</tr>
<tr>
<td>contingency</td>
<td>raise 6s, 60s, 5m</td>
<td>Based on the largest generator contingency less an allowance for load relief. For 5m trade-off between raise regulation.</td>
</tr>
<tr>
<td></td>
<td>lower 6s, 60s, 5m</td>
<td>Based on the largest load block that could fail less an allowance for load relief. For 5m trade-off between lower regulation.</td>
</tr>
</tbody>
</table>

Experience with Market-Based Ancillary Services in the Australian NEM

9

10
Example of Raise FCAS Requirements

- Regulation requirements increased for time-error correction.
- Contingency requirements reflect largest generator less load relief.

Largest Generator Contingency Duration Curves

- Largest credible contingency in Tasmania – set local requirement to ensure frequency corrected using resources only from within Tasmania region if outage occurs.
Interface between market & control systems

NEM Dispatch Engine

ramping signal generator

regulation raise enablement

regulation lower enablement

energy target

frequency error

time error

filtering & processing

regulation requirement (RR)

switching rule:

RR*LRPF_i if RR > 0 or RR*RRPF_i o/wise

generator i power set point

sum RE_i

RRPF_i = \sum RE_i

sum LE_i

LRPF_i = \sum LE_i

Regulation Requirement Profile

early morning ramping

high demand & evening ramp-down
30-minute trading & observed frequency deviation pattern

FCAS spot revenue
- FCAS service providers are only paid for enablement – no usage payments
- FCAS revenue is resolved on 5-minute basis:

$$\text{FCAS Revenue} = \frac{\text{FCAS Price} \times \text{FCAS Enablement}}{12}$$

- FCAS costs recovered from NEM participants
Experience with Market-Based Ancillary Services in the Australian NEM

FCAS revenue streams (13/8/04)

- FCAS revenue (daily-averages since '01)

3100MW of generation lost, frequency to 48.9Hz, ~2100MW of load lost

FCAS raise prices (daily-averages since ‘01)
Raise FCAS average daily price profile

daily cyclic mean calculated for June 06 – June 07

FCAS lower prices (daily-averages since ‘01)
Experience with Market-Based Ancillary Services in the Australian NEM

Lower FCAS average daily price profile

- Lower FCAS average daily price profile
- Daily cyclic mean calculated for June 06 – June 07
- Baseload plant avoiding going below min stable levels
- High demand in afternoons & evenings

Market interface for FCAS providers

- Source: Intelligent Energy Systems
FCAS participation

- generally more participants have installed necessary control systems & entered into the FCAS markets
- rebidding in FCAS occurs frequently – gaming vs. management of technical issues?

<table>
<thead>
<tr>
<th>Fuel source</th>
<th>Lower regulation average enablement (%)</th>
<th>Lower regulation average enablement (%)</th>
<th>Raise contingency average enablement (%)</th>
<th>Lower contingency average enablement (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black Coal</td>
<td>38%</td>
<td>43%</td>
<td>43%</td>
<td></td>
</tr>
<tr>
<td>Brown Coal</td>
<td>9%</td>
<td>16%</td>
<td>16%</td>
<td></td>
</tr>
<tr>
<td>Hydro</td>
<td>45%</td>
<td>36%</td>
<td>36%</td>
<td></td>
</tr>
<tr>
<td>Gas / Oil</td>
<td>8%</td>
<td>6%</td>
<td>6%</td>
<td></td>
</tr>
</tbody>
</table>

calculated for calendar year 2006

Entry into FCAS markets up to ‘03

source: NECA
Experience with Market-Based Ancillary Services in the Australian NEM

Number & duration of Frequency Events FY 04/05

- Outworking of AEMC reliability / security monitoring process

FCAS cost Recovery

- Raise contingency services
 - cost of 3 raise contingency services split between generators based on metered energy

- Lower contingency services
 - cost of 3 lower contingency services split between loads based on metered energy

- Regulation service costs
 - split between generators & loads based on ‘causer-pays’
 - 4s SCADA data processed to identify generators & loads that gave rise to need for frequency regulation
 - fraction of cost calculated using correlations between deviations from spot market targets (or lines of best fit) & regulation control signal
Observations of FCAS costs

- very low ~ 0.4% of market turnover
- significant part of costs associated with rare-events where prices increase dramatically due to network outages requiring local sourcing of service providers (smaller pool of resources)
- generally declined over time, numerous factors:
 - NEMMCO has refined algorithm with time which has generally increased level of co-optimization
 - increased number of service providers
 - increased interconnection in the NEM (QLD & TAS regions) increased pool of providers
 - participants better able to manage trade-offs between FCAS & energy

FCAS Costs for FY 05/06

<table>
<thead>
<tr>
<th>FCAS</th>
<th>$31m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>$7,120m</td>
</tr>
</tbody>
</table>

Source: NEMMCO
Experience with Market-Based Ancillary Services in the Australian NEM

Market Ancillary Service Costs since ‘05

- Arrangements have resulted in very low FCAS costs
- Very few incidents where frequency standards have been breached
- Generally a robust set of arrangements that have worked during large disturbances (e.g. Jan 16 ‘07)
- Clear assignment of roles, responsibilities & principles
- Processes in place to improve efficiency of existing arrangements where possible
- Services offered by broad different types of generators (hydro, gas-fired, coal-fired)
Weaknesses

- only market-based arrangements exist for frequency control (e.g. voltage & other ancillary service markets could be envisaged)
- arrangements have increased complexity of spot market trading
- mismatch between FCAS model & physical reality
- boundary issues between services & market vs. AS
- minimal demand-side participation & generators connected to the LV portion of grid
- lack of hedging instruments for FCAS