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Abstract 

The growing adoption of distributed energy resources (DERs) across Australia may represent 
the start of a transition of Australia’s power system from a centralised generation model 
towards an interconnected set of embedded microgrid systems. In these systems, local trading 
of coincident generation and consumption is being explored, with the idea that this would 
encourage consumer engagement, provide more choice, and incentivise reduced use of 
networks (via increased balancing of loads and generation locally). However coincidence of 
generation and load over short time frames, and hence network benefit, can be difficult to 
determine using existing metering systems.  

There are many sites undergoing trials to determine how energy flows can be efficiently 
monitored and accounted for in microgrid systems. At the current time, commercial metering 
is generally performed on time scales greater than thirty seconds, with most metering systems 
measuring net flows on half-hourly intervals. This represents a barrier to accurate accounting, 
since the time at which nodes generate and consume energy within a wide metering period is 
not known. As a result, end-users may face effective penalties or avoid charges that would 
accrue to their generation or consumption profile under more accurate accounting.   
Accurate accounting for the economic benefits of embedded microgrids that result from either 
reductions in external network use or contributions to improved reliability, rely on sub-second 
level timing, and cannot be commercially factored (or incentivized) without corresponding 
metering. In this paper, the co-incidence of generation and consumption in a micro-grid 
setting is examined over different timeframes using a software based simulation, and the 
impact of different time intervals for accounting is explored using an algorithmic theoretical 
approach. It is found that there are predictable trends in the way that metering time periods 
impact the accuracy of ‘peer to peer’ accounting. For the limited dataset tested, the 
inaccuracies were found to be small relative to overall energy consumption, however further 
work is required to determine whether this can be generalized across the majority of schemes. 



 
1. Introduction 
The electricity industry has seen significant cost-reductions in distributed energy resources 
(ie. rooftop photovoltaics (PV), battery storage, flexible loads) over recent years.  
The growing competitiveness of these technologies has seen a range of new energy business 
models aimed at sharing the apparent reduced transmission and distribution costs where 
distributed generation is consumed close to the point of production. These businesses and 
their associated models can be referred to as ‘local solar’ or ‘peer to peer’ schemes (Giotitsas, 
Pazaitis, & Kostakis, 2015) (Rifkin, 2011). 

These new players have proposed a range of business models and tariff structures, but the 
general premise appears similar; a local energy tariff with value between the existing solar 
feed-in-tariff (FiT) and standard retail consumption tariff is charged to the consumer and 
passed on to the generator if energy can be shown to have been generated and consumed 
‘locally’ within a given subnetwork or isolated region.  
ie. Feed-In-Tariff < ‘Local Energy Tariff’ < Retail Tariff 

This tariff model may be made more financially feasible if distribution and transmission 
network service provider (DNSP & TNSP) businesses are willing to negotiate reduced rates 
for ‘locally’ consumed energy. This would require that DERs generate at peak network times, 
thus reducing additional investment in network infrastructure. Such an arrangement could be 
made under a bilateral arrangement or a regulated mechanism such as the proposed Local 
Generation Network Credits scheme that was rejected by the Australian Energy Market 
Commission (AEMC) in 2016 (AEMC, 2016b). Retailers and prosumers could share in the 
reduced distribution and transmission use of service (DUOS & TUOS) charges for energy 
transacted within the network.  
There are currently a range of trials across Australia that aim to facilitate matching local 
generation and consumption. These can be standalone microgrids, grid-connected embedded 
networks or existing distribution subnetworks with high penetrations of DERs.  

A number of business have begun to market related schemes as ‘peer to peer’ (P2P) energy. 
Recently in the Australian context, retail entity Powershop have trialed their ‘Your 
Neighbourhood Solar’ model (Powershop, 2017) whereby participants elected to pay a 
premium on top of their existing retail tariffs to subsidise local solar generation. These models 
have also been offered alongside new technical metering and billing solutions based on 
blockchain technologies, such as those from LO3 Energy (LO3, 2017), Power Ledger 
(PowerLedger, 2017) as well as a ‘desktop-trial’ completed by AGL (AGL, 2017).  
While these local energy or peer-to-peer business models appear to have promise there has 
been little academic exploration of potential accounting schemes for the ‘netting’ of 
generation and consumption within either a physical or virtual embedded network. There 
appear to be a number of issues that may present barriers or inaccuracies in accounting for 
energy flows and recording which participants should be entitled to the financial benefits of 
local generation.  
This is particularly relevant in the Australian context, where these business initiatives have 
been used by regulators to justify further deregulation under the rationale of retail innovation, 
which is expected to erode margins and improve consumer outcomes (AEMC, 2016a). Such 



 
an outcome may not be plausible if emerging competitive structures introduce inappropriate 
price signals that do not enhance the overall economic efficiency of the electricity network.   
The electricity sector is required to precisely match supply and demand at all times and 
locations across the interconnected network. The question of how commercial arrangements 
facilitate or perhaps detract from this ongoing supply-demand balancing at a local level 
provides the motivation for this paper. In particular, we consider some quite specific 
accounting problems that have emerged in economic modelling of ‘peer to peer’ energy 
networks, specifically around the coincident timing of distributed generation and consumption 
and hence contribution towards this ongoing balancing challenge.  

2. Problem Formulation 
The underlying value proposition of local or peer to peer energy is that participants are 
rewarded for aligning consumption with local generation in order to reduce overall industry 
costs associated with energy service delivery to consumers. Participants are assumed to be 
operating load and generation nodes in in an embedded network, with an effective ‘gate 
meter’ (virtual or physical) that is able in some manner to track the net electricity generation 
or consumption of all participants in the system. In the ideal case, allocation and payment 
rules should provide incentives for participants to align consumption and generation and thus 
reduce reliance on the broader electricity industry’s generation and relevant transmission and 
distribution network.   
Such a scheme requires an interval meter connected to every generation and consumption 
node. In Australia, almost all metering for commercial purposes records average energy flows 
over 30 minute intervals. In reality of course, fluctuations in PV generation and load profiles 
can take place on significantly shorter timescales, and this can have economic impacts given 
that supply-demand balance must be maintained over much faster (seconds) timeframes. For 
business models looking to facilitate local balancing, this 30 minute metering interval may 
well mean that in some cases, participants with non-coincident generation and consumption 
may be allocated payments intended to reward coincidence. This outcome may well have 
associated broader economic inefficiencies .  

In particular, it appears to have been assumed in many ‘peer to peer’ energy schemes that the 
aggregate network impact of each participant will be recorded as the same whether meters are 
logging data on 5-second, 30-second, 5 minute, 30 minute etc. time intervals. This is not the 
case. Locally generated energy from one subperiod (ie. the first 5 minutes of a 30 minute 
metering period) may be counted towards somebody’s load in subsequent (5 minute) 
intervals. In some instances a gate meter reading can provide an indication of the discrepancy, 
but in networks with more than two participants it can be shown that the information loss does 
not allow the correct accounting strategy to be resolved. These types of issues are not only 
associated with distributed generation. The wholesale National Electricity Market uses a 
hybrid 5-30 minute arrangement where dispatch occurs at 5 minute periods while the 
commercial ‘price’ is the average of six consecutive 5 minute wholesale prices. The potential 
economic efficiencies of this have been noted, and there is a rule change for true 5 minute 
pricing (AEMC, 2017). The national electricity market (NEM) also has a range of ancillary 
markets that establish commercial signals for large participants for supply-demand balancing 
over periods of less than 5 minutes. There has however been virtually no discussion of these 



 
potential issues for local supply-demand balancing – a gap that this paper aims to address. In 
particular, we seek to answer two questions: 

• What types of inaccuracies are possible due to meter timing inaccuracies as described? 

• What metering time period is required in real life for accounting of PV to be near-
correct? 

The answers to these questions appear to require the comparison of what is recorded to have 
happened on some nominally small time-scale, versus what seems to have happened on the 
metering timescale.  
Load and PV generation profiles can be volatile, with weather and electrical interference 
contributing to large fluctuations in energy consumption and export.  Figure 1 below shows 
an example of hypothetical solar and load coincidence between two separate participants in a 
local solar or ‘peer to peer’ scheme, over a 30 minute period. An export meter on the PV 
system participant would record the area under the ‘solar’ PV curve as generation and an 
import meter on the participating load would record the area under the load curve as 
consumption. A ‘local solar’ sharing or ‘peer to peer’ scheme would then, typically, net the 
recorded generation and consumption, and allocate discounted tariffs to reward the 
coincidence. The true ‘peer to peer’ generation and consumption of energy however occurs 
for only a short period (represented by the shaded area under both curves). This means that a 
scheme operating on a longer metering time scale such as, in this case, 30 minutes would in 
this case significantly misrepresent the proportion of energy consumed locally.  

 
Figure 1. Example Coincidence of Solar and Load Profiles Over 1 to 30 Minutes. 

In a network featuring one generator and one consumer such as this, a gate meter can be used 
to resolve the discrepancy by calculating the total import and export in the system. With three 
or more participants however, there is not enough information to resolve the true amount of 
locally consumed energy for each consumer. It can be shown that the ability to accurately 
resolve the amount of locally consumed energy reduces with each additional participant added 
to the system.  

In the worst case, this might mean that no consumption is coincident with generation, despite 
all meters appearing to suggest that energy was consumed locally.  

0	
2	
4	
6	
8	

1	 2	 3	 4	 5	 6	 7	 8	 9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	

Po
w
er
	(k
W
)	

Minute	

Example	Coincidence	of	Solar	and	Load	Profiles	Over	30	Minute	Period	

Solar	 Load	



 
2.1. Gate Metering and Total Energy 
If a gate meter is present, local energy consumption can be calculated by taking the difference 
between the gate meter import reading and the sum of all individual readings. Alternatively it 
can be calculated by taking the difference between the gate meter export reading and the sum 
of all generation readings. It should be noted that some systems will not be operating with 
gate meters, for example Powershop’s offering, which is intended to operate on existing 
distribution networks (Powershop, 2017). 

‘Total Consumed Peer to Peer Energy’ by all scheme participants in any given time period 𝑡 is 
thus given by: 

𝐸𝑝2𝑝_𝑡𝑜𝑡𝑎𝑙_𝑡 =(1𝑘=𝑛𝐸𝑘_𝑡)− 𝐸𝑔𝑎𝑡𝑒_𝑖𝑚𝑝𝑜𝑟𝑡_𝑡      (1) 

for K consumption participants, with each participant 𝑘’s energy import given by 𝐸𝑘 and 
gate-metered imported energy as 𝐸𝑔𝑎𝑡𝑒_𝑖𝑚𝑝𝑜𝑟𝑡 

or ‘Total Generated Peer to Peer Energy’ in any given time period given by  

𝐺𝑝2𝑝_𝑡𝑜𝑡𝑎𝑙=(1𝑘=𝑛𝐺𝑘)− 𝐺𝑔𝑎𝑡𝑒_𝑒𝑥𝑝𝑜𝑟𝑡      (2) 

for n generation participants, with each participant 𝑘’s energy export given by 𝐺𝑘 and gate-
metered exported energy as 𝐺𝑔𝑎𝑡𝑒_𝑖𝑚𝑝𝑜𝑟𝑡 

Note that these are equivalent and 𝐺𝑝2𝑝_𝑡𝑜𝑡𝑎𝑙 should be equal to  𝐸𝑝2𝑝_𝑡𝑜𝑡𝑎𝑙 

With the ability to calculate the amount of energy consumed locally within a subnetwork or 
embedded microgrid, an allocation rule can be defined that will determine each participant’s 
accounting of and payment for coincident generation and consumption. 

2.2. Models for ‘Fair’ Allocation of Renewable Energy Externalities 
Price signals are the key economic lever by which operational and investment decisions can 
be influenced by system designers or policy makers. For uncontrolled loads and DERs (ie. 
Rooftop PV) the aforementioned issues are accounting-only, in that regardless of local trading 
arrangements, the rest of the electricity network will be exposed to the same import or export 
from the system participants. In the case of controlled loads and DERs (ie. battery systems), 
local energy allocation rules could feasibly impact operational decision-making, and it is 
important that these structures are modelled in such a way that dominant strategies maximise 
(or balance) social benefit across the pool of participants and the electricity network more 
broadly. For both controllable and non-controllable loads and generation sources, local energy 
allocation rules may impact investment decision-making.  

It should also be noted that the concept of economic efficiency or maximisation of net social 
benefit may differ between the interests of the participants or the network more broadly. 
Improving economic efficiency may not necessarily be aligned with maximising local 
consumption, as there may be times in which the most economically efficient outcome may 
be to assist the rest of the industry, rather than simply do no harm.  
It is worth exploring the ways in which energy flows may be accounted for, or allocated, 
within a ‘peer to peer’ subnetwork. The economically ‘fair’ thing to do seems to be to 



 
distribute the ‘local’ tariff among those who participated in local energy consumption and 
generation (as a charge and payment respectively). However, noting the above points it is 
clear that the concept of economic fairness needs more detailed consideration.  

As electricity flow is difficult to trace back to a generation source, it is not currently practical 
to determine where locally generated energy has flowed within a network. We are thus 
presented with the challenge of distributing potentially scarce benefits of local generation (ie. 
the local tariff) among an arbitrary number of consumers and generators.  

There does not yet exist a standard model for allocating locally generated energy in a 
subnetwork. In determining a rational model it is prudent to assess the model’s effectiveness 
at dealing with sub-standard meter timing issues.  
There appear to be two basic solutions to this problem with a number of algorithmic 
modifications possible.  
The simplest solution, (the ‘fractional allocation rule’) involves calculating the fraction of all 
consumed energy that came from local generation sources. Each consumer is thus allocated 
this proportion of their overall timeperiod consumption as having come from local generation 
sources. While this option is mathematically simple, the dominant strategy for controlled 
loads in grids with non-dispatchable local generation then appears to be to simultaneously 
consume at times of solar generation, regardless of the behavior of other participants, as the 
higher their output the greater the volume of energy consumed will be accounted for as locally 
generated. In this scenario, loads are able to reduce the volume of local energy allocated to 
other participants by dispatching at times of high PV output. This may have some advantages 
in terms of maximising local consumption, but the lack of a mechanism to signal that 
generation and consumption have been matched may lead to excess consumption.  

An alternative solution (the ‘quota allocation rule’) is to allocate each consumer a fixed quota, 
a proportion of the total local generation pool for a given time period. If a consumer’s 
consumption is less than their quota, the surplus is added to the pool and remaining 
consumers’ quotas are recalculated. It is feasible that some financial incentive could be 
introduced to incentivize consumers to stick to their allocated quotas.   

2.3. Mathematical Formulation of Fractional Allocation Rule 
We recall that in this allocation rule, the total fraction of locally consumed energy is 
calculated with respect to total consumed energy in a given time period.  
 

This ‘peer to peer fraction’ for an arbitrary time period is given (with reference to (1) ) by: 

𝐸𝑝2𝑝𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛=𝐸𝑝2𝑝_𝑡𝑜𝑡𝑎𝑙𝐸𝑡𝑜𝑡𝑎𝑙 

where total ‘peer to peer’ energy used is given by 𝐸𝑝2𝑝 and total consumed energy by 𝐸𝑡𝑜𝑡𝑎𝑙. 

Each participant is then allocated this fraction of their import as ‘peer to peer.’ Ie. for 
participants 𝑘 in the set of consumption participants 𝑃 (𝑘0,𝑘1,𝑘2…𝑘𝑛): 

 𝐸𝑝2𝑝𝑘=𝐸𝑝2𝑝𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛�𝐸𝑡𝑜𝑡𝑎𝑙𝑘 



 
Similarly, generators are considered to have generated the product of their output and the 
fraction of p2p energy in the total generation pool (with reference to (2) ):  

𝐺𝑝2𝑝𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛=𝐺𝑝2𝑝_𝑡𝑜𝑡𝑎𝑙𝐺𝑡𝑜𝑡𝑎𝑙 

where 𝐺𝑡𝑜𝑡𝑎𝑙 is the sum of all generator output in the time period.  

Each generator k in the set of generator participants  𝑃 (𝑘0,𝑘1,𝑘2…𝑘𝑛) is then allocated this 
fraction of their export as ‘peer to peer’ ie. 

 𝐺𝑝2𝑝𝑘=𝐺𝑝2𝑝𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛�𝐺𝑡𝑜𝑡𝑎𝑙𝑘 

2.4. Mathematical Formulation of Quota Allocation Rule 
In the quota scenario, the total energy consumed peer to peer is first calculated. Each 
consumption participant is initially allocated a proportion of this energy. For simplicity these 
allocations are assumed equal here but equivalent strategies exist for unequal allocations.  
This algorithm must be run in multiple steps, but requires only one pass across the set of 
participants, as long as the participants are ordered by ascending consumption such that 
surplus allocations are not re-awarded to already-examined participants. The algorithm thus 
runs in O(n) time.  
Setup: Initialisation of the ‘Peer to Peer’ Energy Pool 

Each participant’s quota is generated from a ‘pool’ of ‘peer to peer’ energy. Let the pool at 
step 0 be equal to the total available ‘peer to peer’ energy: 

𝑃𝑜𝑜𝑙0=𝐸𝑝2𝑝 

Setup: Initial ‘Peer to Peer’ Allocation 

Let the ‘peer to peer’ allocation of the lowest-consumption participant (in a network with 𝑛 
total participants) be given by: 

𝐸𝑝2𝑝_𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛0=𝑃𝑜𝑜𝑙0𝑛 

Step 1: Calculation of a Participant’s ‘Peer to Peer’ Consumption 

A participant 𝑘’s ‘peer to peer’ energy consumption is then calculated. Their ‘peer to peer’ 
consumption must always be less than or equal to their allocation, ie. 

𝐸𝑝2𝑝𝑘=min⁡(𝐸𝑡𝑜𝑡𝑎𝑙𝑘,𝐸𝑝 2𝑝𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑘) 

Step 2: Update of Pool 
To calculate the next participant’s allocation, any surplus from the previous participant is left 
in the pool and this is divided by the number of remaining unexamined participants. 

𝑃𝑜𝑜𝑙𝑘+1=𝑃𝑜𝑜𝑙𝑘−𝐸𝑝2𝑝𝑘 

Step 3: Update of Next Participant’s ‘Peer to Peer’ Allocation 
The ‘peer to peer’ allocation for the next participant is then recalculated: 



 
𝐸𝑝2𝑝_𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑘+1=𝑃𝑜𝑜𝑙𝑘+1𝑛−(𝑘+1) 

Loop 
Steps 1, 2 and 3 are repeated until all participants have been allocated excess peer to peer 
energy.  
It is implicit that an equivalent strategy exists for allocating ‘peer to peer’ generation among 
generators. If not all generated energy in the system is used by participants, there exists an 
accounting task in allocating which participants are allowed a higher ‘peer to peer’ pool price 
or tariff.  
We have thus defined a quota-based allocation rule based on the number of participants on the 
generation and consumption sides.  
Potential problems may arise with this quota approach in large loads or generators receiving 
relatively small allocations but it is unclear whether this is an inefficient signal. There does 
however appear to be an incentive from a participant entity perspective for participants to 
break up generation and consumption into smaller metering units so as to received a greater 
share of the overall allocation. Possible modifications include changing ‘n’ on the generation 
side to equal units of generation capacity. A similar model on the consumption side may 
require participants to buy capacity allocations. 

3. Determining Impact and Effectiveness of Metering and Allocation Strategies 

3.1. A Measure of Comparison for Meter Timing Period Lengths 
Now that two standard accounting scenarios have been defined, we can examine whether the 
overall outcomes are different depending on whether generation and consumption are 
measured on shorter or longer time intervals.  

We define a measure of an individual participant k’s deviation 𝐷𝑘 from short to long time 
periods as the difference in their longer time period peer to peer energy and their cumulative 
short time period peer to peer energy, where the long time period is a multiple t of the short 
time period and the measure is normalized to the participant’s total energy consumption in the 
long time period. 

𝐷𝑘=|𝐸𝑝2𝑝𝑙𝑜𝑛𝑔− 1𝑡𝐸𝑝2𝑝𝑠ℎ𝑜𝑟𝑡|𝐸𝑡𝑜𝑡𝑎𝑙𝑙𝑜𝑛𝑔 

In the best case scenario, the accounting result for every participant in the network under a 
long time period is equal to the cumulative short time period accounts, so the deviation is 
zero. In the worst case, either of the numerator terms will be zero and thus the remaining term 
will be equal to the denominator, so the deviation measure will be 1.  

3.2. Simulation Method 
A software program was built that takes as input a folder of formatted CSV files with time 
series generation and consumption data recorded on five minute intervals. These data files are 
used as the basis for the creation of object-oriented software models that can be queried to 
find consumption and generation at any time period in the series, on any given time scale (ie. 
5, 10, 15 minutes).  



 
Participants described by the time series data are assumed to be participating in a peer to peer 
scheme under two allocation rules: the quota allocation rule and the fractional allocation rule. 
A python implementation of each rule was developed based on the algorithms outlined 
previously. The algorithms were programmed record the assigned ‘peer to peer’ energy 
consumed or generated by each participant under their respective allocation rule. 

The results of each allocation algorithm were then processed to calculate the deviation score 
𝐷𝑘 for each participant in the respective sets of consumers and generators.  These scores were 
then averaged across all time periods where they could be calculated (ie. when a participant 
had non-zero generation or consumption).  

In order to avoid biasing the results toward outlier energy fluctuations in the dataset, this 
simulation was then re-run multiple times, moving the starting time forward by one interval of 
the shortest period (ie. 5 minutes). The results of these multiple simulations are then averaged 
for each participant.   

3.3. Data Sources & Simulation 
The simulation was used to model the impacts of meter timing changes on a hypothetical 
‘peer to peer’ network comprising 20 solar and load systems located close to the University of 
New South Wales in Sydney, Australia. The sites were chosen for their proximity and the 
availability of 5-minute generation and consumption data. The datasets were sourced from 
pvoutput.org and correctly formatted versions can be found for review in the code repository. 
The simulation was run across ten days of publicly available data. Where gaps existed in the 
datasets, the corresponding participant model returned zero kWh consumption or generation 
for those time periods. The consumption and generation data is shown below in figure 2. It 
can be seen that there is some volatility in the load data, but that for these periods the solar 
data less volatile. This will impact the results by reducing the metering error, as in any given 
time period a high 𝐷𝑘value is dependent on a change in both generation and consumption.  



 

 
Figure 2. Time Series Generation and Consumption at Measured Sites for a Sample 10 

Day Period.  

3.4. Results 
In section 2.3, a relationship in the fractional allocation rule was derived between the time 
period multiple and the deviation score 𝐷𝑘, whereby 𝐷𝑘 could be said to be increasing less 
with each subsequent time period multiple. The results of the ‘peer to peer’ network 
simulation do not contradict this relationship, with the general trend available in figure 3 for 
consumers and figure 4 for generators below. Participants that showed no consumption or 
generation were omitted from the respective charts for simplicity. 

 



 

 
Figure 3. Deviation Scores for Each Generation and Consumption Participant under 

Fractional Allocation Rule 

The results for energy consumers under the quota allocation method appear to show a similar 
trend in terms of increasing deviation scores 𝐷𝑘for each participant k. For generators 
however there appears to be no clear trend as the time period length is increased; some 
participants appear to see a reduction in deviation score, while others see an increase. There is 
however in the case of the generators a much larger deviation than was observed among 
consumers. The results can be seen in Figure 4 below. 

 

 

 
Figure 4. Deviation Scores for Each Generation and Consumption Participant under 

Fractional Allocation Rule 
 



 
3.5. Discussion 
It appears that the fractional allocation rule provides predictable results with regard to the 
deviation in allocation accuracy as time period length is increased. The accuracy of the quota 
allocation rule for each participant appears to be more dependent on other factors (eg. 
generation / consumption profile or the number of participants).  
The results do not appear to contradict the expected trends in metering accuracy as time 
period length is increased, however the expected reduction in the impact of increased time 
period on fractional allocation rule deviation was not directly observed.  

The results of this analysis should be taken as a ‘first pass’ at quantifying the impacts of meter 
timing in peer to peer energy trading schemes. There appear to be several steps that could be 
taken to extend this analysis. The data series length appears to be a potential limitation, as the 
measurement period may not have coincided with potentially volatile days (ie. cloudy skies 
for PV / irregular load use). As the research is intended to measure the impact of volatile load 
and PV output on meter timing, this is a significant limitation. 

Additionally, the assumption in this simulation was that 5 minutes was a ‘rational resolution’ 
as defined in section 2.2. This assumption may not hold true, and further analysis of higher-
frequency measurements (ie. 30 seconds or 5 seconds) is needed to reveal the true ‘rational 
resolution’ for ‘peer to peer’ energy trading analysis. This further highlights the growing 
research need for publicly available high-resolution PV output and load data.  

4. Conclusion 
The rapidly falling capital cost of DERs and associated ‘smart’ metering technologies appears 
to be empowering a range of new business structures, based on the ‘netting’ of consumption 
and generation between different participants in an electricity network. These ‘peer to peer’ 
energy sharing or trading schemes rely on the assumption of coincidence between generation 
and consumption. Many feature incentive mechanisms that appear designed to encourage 
coincident generation and consumption.  
These schemes are however reliant on metering that provides data on time scales that can 
account for expected variations between generation and consumption. If metering does not 
provide the appropriate time resolution, accounting errors will be introduced in participant 
settlements, and incentive structures will perform in an unexpected or inefficient manner, thus 
negating the perceived advantages of a ‘peer to peer’ network.  

This paper explored a range of allocation rule designs intended to account for energy flows in 
a ‘peer to peer’ system. Two basic rule structures are developed, based on fractional 
accounting and quota-based accounting respectively. These structures are intended as a basis 
upon which tariff structures and incentives can be built to incentivise efficient behaviour in a 
‘peer to peer’ network.  
A definition of deviation from expected or ‘near-correct’ accounting was then developed, 
based on the properties of the two rules. An open-source simulation was then developed in 
python which aimed to apply the allocation rule algorithms and measures of meter timing 
deviation to real-world datasets. The simulation was run on ten days of solar and load data 
comprising a hypothetical ‘peer to peer’ energy sharing network. The results of this analysis 
did not appear to contradict the theoretical explorations of meter timing impacts upon 



 
accounting accuracy, though further investigation on larger datasets with shorter time 
resolutions is required to fully explore the potential implications of each rule and the meter 
timing requirements for accurate energy flow accounting.  

5. References 
AEMC. (2016a). 2016 Retail Competition Review, Final Report (RPR0004). Retrieved from 

Sydney: http://www.aemc.gov.au/getattachment/d5a60d5b-d2dc-4219-af60-
51c77d8aaa4f/Final-Report.aspx 

Local Generation Network Credits, Final Rule Determination,  (2016b). 
Draft National Electricity Amendment (Five Minute Settlement) 
Rule,  (2017). 
Giotitsas, C., Pazaitis, A., & Kostakis, V. (2015). A peer-to-peer approach to energy 

production. Technology in Society, 42(Supplement C), 28-38. 
doi:https://doi.org/10.1016/j.techsoc.2015.02.002 

LO3. (2017). LO3 Energy Website.   Retrieved from http://lo3energy.com/ 
PowerLedger. (2017). Power Ledger Whitepaper. Retrieved from Australia: 

https://powerledger.io/media/Power-Ledger-Whitepaper-v3.pdf 
Powershop. (2017). Your neighbourhood Solar.   Retrieved from 

https://blog.powershop.com.au/your-neighbourhood-solar/ 
Rifkin, J. (2011). The third industrial revolution. New York, 291.  
 

Acknowledgements 
Naomi Stringer for her assistance in determining allocation rule strategies. 

 


