

Electricity Industry Restructuring A review of progress

Hugh Outhred

Presiding Director, Centre for Energy and Environmental Markets
The University of New South Wales
Sydney, Australia

Tel: +61 2 9385 4035; Fax: +61 2 9385 5993;

Email: h.outhred@unsw.edu.au

www.ceem.unsw.edu.au

Key issues for the electricity industry

- Part of the stationary energy sector:
 - Capital intensive, long-lived infrastructure
 - In competition with other energy vectors to deliver end-use energy services
- "Essential good" for households & industry:
 - A high quality, secondary energy form:
 - Expensive to make but flexible to transport & use
- Externalities of primary energy forms, e.g.
 - Fossil fuel depletion & climate impact
 - Nuclear waste

- Specific properties of electrical energy:
 - No cost-effective electrical energy storage
 - Instantaneous transmission & distribution
 - Availability & quality of supply always at risk
- A "just in time" flow industry:
 - Energy flows according to network laws:
 - From all generators to all end-use equipment
 - 'pool' rather than 'bilateral' trade
 - Production determined by end-use equipment
 - Supply & demand side options are equally valid
 - Retailers don't have a clear role in an electricity industry

Comparison of car & electricity industries

Cars

- Can be touched seen, & stored, last for years
- Consumer choice promotes competition:
 - Each consumer can buy a specific car
 - Each manufacturer can control product quality
- Spatial separation of buyer
 & seller not a serious issue

Bilateral trade works well:

 Can use normal commercial framework

Electricity

- Intermediate energy form:- invisible, ephemeral, fungible - continuous flow
- A consumer receives continuous flow of energy from all power stations:
 - Consumer can't buy from a specific power station
 - Power station can't guarantee quality of energy at point of end-use
- Availability & quality varies with location due to network imperfections

Bilateral trade does NOT work well:

 Must design & implement a trading regime that works for electricity

Traditional electricity industry model: Vertically integrated *electricity supply utility*

- Britain, New Zealand, Australia, etc.
 - Statutory authority supervised by a Minister
 - Decision making political, "behind closed doors":
 - Politicians negotiate tradeoffs

USA:

- Regulated private monopoly (in most cases)
- Regulatory commission & formal public hearings
- Criticisms of traditional model:
 - Inefficient; stakeholder capture; risk averse

Electricity industry restructuring objectives

- Improve economic efficiency by facilitating competition & new entry, which assumes:
 - Effective markets & sound legal & policy frameworks
- Enhance accountability to end-users & society through 'customer choice', which assumes:
 - End-users become active participants in the industry
 - End-users are independent agents who make "informed" decisions & efficiently manage the associated risks:
- Implement a market-based approach to social & environmental externalities:
 - Assumes political will to regulate non-monetary impacts
- Release government funds by asset sales:
 - Creates a moral hazard for politicians

Other drivers for change in infrastructure industries

- Improving theoretical understanding:
 - Imperfect regulation versus imperfect markets
- Evolving political context in western world:
 - Emphasis on individual choice & accountability
- Challenging conditions for central planning:
 - Slow & uncertain growth in demand
 - Technology progress creating new options, eg:
 - Renewable energy; end-use efficiency
 - Growing environmental concerns

JNSW THE UNIVERSITY OF NEW SOUTH WALES • SYDNEY • AUSTRALIA

World Energy Council perspective on electricity & gas industry restructuring (2004)

- Examine competitive potential:
 - Of each stage in the energy conversion chain
- Ensure benefits commensurate with costs:
 - For each stage of the proposed reforms
- Respect the limits & costs of competition:
 - Focus on simple choices & market designs
- Governments should:
 - Restrict their role to setting sound rules to be administered by impartial regulators
 - Take account of links between gas & electricity

The electricity industry restructuring process

Issue	Transition	Key challenges
Industry structure	From monopoly To competing firms Keeping central operation Obligation to supply?	Cultural change; Adequate competition; End-user participation Accountability
Supply industry cash flow	From cost recovery To trading profitability	Market power; Market design fidelity; Accountability
Industry regulation	From rate of return To Incentive Regulation Obligation to supply?	Multiple objectives; Measuring outcomes; Accountability
External impacts	From direct cost To full costs	Variable RE energy flows End-user participation; <i>Accountability</i>

Electricity (& gas) industry participants

Commercial,	 primary energy suppliers 	
location-specific	 electricity generators 	
	 electricity end-users 	
	 reversible storage 	
Commercial, inter- location traders?	 network service providers (electricity & gas) 	
Non-commercial	 system operators 	
	 industry regulators 	
	 policy makers 	

Challenges for a restructured industry

- Consistency between centralised & decentralised processes:
 - Centralised: short-term industry operation; longterm industry design; industry regulation
 - Decentralised: spot & forward energy markets;
 some ancillary services
- Sound interface between centralised & decentralised processes:
 - Clear accountabilities & "hand-overs"
- Effective design of spot & forward markets
 - Cost of supply much less than end-use value:
 - Need active participation by informed end-users

Timeline for electricity trading

(requires locational detail & active demand-side participation)

Uncertainty & risk in electricity trading

Time scale	Issues	Mechanisms
< 30 minutes	Supply-demand balanceDemand uncertaintyContingencies	Ancillary services
30 minutes to	 Supply-demand balance 	 Ex-ante spot market
several days	 Security of supply 	 Derivative markets
	 Unit commitment 	 Forecast capability
Weeks to	 Inter-temporal links, eg 	 Derivative markets
years -	 Retail tariff setting 	 Forecast capability
operation	 Hydro scheduling 	
Weeks to	 Investment decisions: 	 Derivative markets
years Š	 Economic efficiency 	 Forecast capability
investment	 Future supply security 	 Policy framework

Ideal spot market trading of electricity

- Specify quality of supply (QOS) criteria:
 - Assume QOS maintained by Ancillary Services
- Use shortest spot market interval consistent with commercial decision making, e.g.
 - Half-hour trading intervals
- Specify locations at which trading occurs:
 - Use multiple locations to partly incorporate network losses & flow constraints
- Active generator & end-user participation:
 - Symmetrical bidding & market clearing price
 - Demand & supply side options fully equivalent

Practical implementation of electricity trading

- Wholesale spot & forward market:
 - Large generators, retailers, large consumers
 - Some representation of networks in markets
- Retail spot & forward market (transition?):
 - Retailers, consumers, embedded generators
- Ancillary services & future projections:
 - Hybrid engineering & commercial arrangements
- Residual network services:
 - Regulated access regime, administered network pricing, limited competition in some aspects

Metering and communication

Metering:

- Interval metering essential for all participants:
 - Record 30 minute energy, quality & availability
 - Provide data read-out for participant
- Profiling not an adequate option

Communication:

- 30-minute energy prices sent to all participants
- Feeder power flows monitored continuously
- Participant 30-minute energy collected at appropriate intervals for billing purposes

Summary of electricity industry restructuring

- A "designer" process:
 - Industry-specific laws, codes, markets
 - A "social experiment" with risks & ethical issues
- Mix of technical, economic & policy issues:
 - Physical behaviour continuous & cooperative
 - Commercial behaviour individual & competitive
- Restructuring is still a learning situation:
 - No complete successes, some serious failures, difficult to return to monopoly industry
 - Must solve commercial, technical & institutional challenges (each aspect must function well)

Electricity market models

- Gross pool (eg Australia & New Zealand):
 - Temporal & location risk managed collectively:
 - Ancillary services, spot market, PASA, SOO
- Net pool (eg UK NETA, California):
 - Long term & location risk managed bilaterally
 - Network not modelled in trading arrangements
 - Short-term operational risk managed collectively:
 - System operator given only one day's notice of bilateral trades

Implementation of Australian National Electricity Market (source: NEMMCO)

SOO & ANTS (10 yr)

- ST & MT Projected Assessment of System Adequacy support reserve assessment & participant operating decisions. ST PASA projects region demand & reserve for 7 days @ 30 min resolution, updated every 2 hours. MT PASA projects region daily peak demand & reserve for 2 yrs, updated weekly.
- Statement of Opportunities (SOO) & Annual National Transmission Statement (ANTS) are intended to inform generation, demand & network investment decisions (10 year horizon, issued annually)

Smoothed Regional Ref Prices (RRPs) since start of Australian National Electricity Market

(NECA, 04Q2 Stats, 2004)

Qld RRP duration curve, March-June 04

Distribution of NEM spot prices & revenues

(Federal Govt: Securing Australia's Energy Future, 2004)

Reducing generation to raise spot market price

(graph courtesy of Intelligent Energy Systems EMIS facility)

(demand-side response: derivative contract or reduce demand)

Changing generation offer to raise spot market price (2/8/03) graph courtesy of Stuart Thorncraft &

Intelligent Energy Systems EMIS facility (<u>www.iesys.com.au</u>) (possible demand-side responses: derivative contract or reduce demand)

Transgrid CT failure at 21:42 13/8/04 caused 3,100MW of generation to trip: frequency fell to 48.9Hz; ~2,100 MW load shed in NSW, Queensland & Victoria

(www.nemmco.com.au)

UNSW

NEM energy revenue, 13/8/04

NEM frequency control ancillary service (FCAS) revenue 13/8/04 (NEMMCO, 2004)

Perceived problems with the UK pool

(E Marshall, England & Wales wholesale market 2 years on, Ofgem, 2003)

Key features of NETA

(www.ofgem.gov.uk)

- Bilateral forward trading:
 - Compulsory notification of contract position to System Operator (NGC) by "Gate Closure":
 - Initially 3.5 hour then 1 hour ahead from 2/7/02
- Voluntary offers to provide balancing services
- Settlement process for mismatches:
 - Under contracted generators & over contracted retailers receive "system sell" price (SSP)
 - Over contracted generators & under contracted retailers pay "system buy" price (SBP)
 - Normally expect that SBP > SSP

Key features of NETA

(Ofgem 1 year review of NETA, July 2002)

Daily average system buy & sell balancing prices and current day forward price (UKPX)

(S Brown, England & Wales wholesale market 2 years on, Ofgem, 2003)

Average Daily Energy Imbalance Prices in comparison to Average Daily UKPX Prices

(D Newbery, England & Wales wholesale market 2 years on, Ofgem, 2003)

Trend towards vertical integration reduces reliance on balancing mechanism

(Ofgem 1 year review of NETA, July 2002)

Some UK perspectives on NETA

(England & Wales wholesale market 2 years on, Ofgem, 2003)

- Newbery (Cambridge University):
 - Increased competition in fuel & generation may be the key driver on wholesale price reductions
 - NETA very expensive to implement
- Yarrow (Oxford University):
 - How will long-term security of supply be maintained?
 - NETA can't represent transmission losses & constraints due to bilateral nature

Reduction in electricity prices "not due to NETA" (Mirrless-Black, IEE Ireland colloquium, 2004)

Real electricity and fuel costs 1990-2003

North America (USA, Canada, Mexico): Three interconnected power systems

Electricity industry restructuring in USA

- Federal level (inter-state trade):
 - PURPA (1978) required utilities to buy from "qualifying facilities" within their service territories
 - EPA (1992) mandated transmission access for wholesale transactions (buyers must be utilities):
 - Access & "wheeling" charges (a bilateral trade model) regulated by Federal Energy Regulatory Commission
- State level (intra-state trade):
 - Some states began EI restructuring:
 - Bilateral trade (eg California) or pool (eg PJM)
 - Single state (California) or groups of states (PJM)

Comparing day-ahead average electricity prices in California & New York in 2000 (Flaim, 2003)

Source: NYISO MIS 3/1/01; UCEI Berkeley web site

Comments on California restructuring

- A politically influenced bilateral trading model:
 - Compromises, inconsistencies & complexity
- Many non-ideal features:
 - Not consistent across Western System:
 - Or even within California
 - Economic & technical regulation separated
 - No coordinated support for investment decisions:
 - eg IOUs were forbidden to forward contract
 - Poor spot market design (Cal ISO default market)
 - Short horizon for managing system operation
 - Large residual task for ancillary services

Other factors contributing to failure of California electricity restructuring

- Hydro reserves had been run down:
 - California still ~25% hydro energy
- Gas & NOx permit prices were rising:
 - Allegations of market power in gas market
- Approval difficult for new generation & network
- Continuing growth in demand, including:
 - Temperature sensitive residential air-conditioning
 - High-value commercial & high-tech industrial
- High wholesale prices & regulated retail tariffs:
 - PG&E and SCE eventually went bankrupt

Areas affected by blackout of 14/8/03

(T Mount, Cornell University, 2004)

By 4:13pm, cascading outages had blacked-out 50 million people in northeastern USA & Ontario Canada

The North America Blackout of 14/8/03

(www.spectrum.ieee.org/webonly/special/aug03/black.html)

- DOE studies had predicted trouble since '98:
 - Inadequate regional oversight & control
- Operators unable to stop problem escalating:
 - Midwest ISO had less authority than PJM & New England counterparts; SCADA failures
 - Human errors & loss of institutional capacity
- Proposed remedies:
 - Clarify operator accountability: regional ISOs
 - Build network capacity & institutional skills

Conclusions from North American experience (Massey, 2003)

- Electricity doesn't respect political boundaries
 - Consistent rules over entire market region
- Fundamental design principles:
 - Ex-ante, locational spot & derivative markets
 - Transmission losses & flow constraints
 - Independent grid and market operation
 - Market monitoring and mitigation of market power
- Enlarging market scope by interconnection:
 - Reduces supply-side market power
 - Requires consistent rules & regulation

Conclusions - future challenges

Electricity:

- Enhanced end-user participation & accountability
- Uniform governance & regulation
- Efficient network investment that gives equal consideration to distributed resource options

Gas:

- Efficient market design for existing gas network
- Efficient investment in gas infrastructure
- Sustainability of the stationary energy sector:
 - Dramatic reduction in energy use