Impact of Wind Farm Dispersion Across the Australian NEM on Wind Penetrations in Least-cost 100% Renewable Electricity Scenarios

Ben Elliston and Iain MacGill
Centre for Energy and Environmental Markets
School of Electrical Engineering and Telecommunications
UNSW Australia

b.elliston@unsw.edu.au
Outline

• Introduction to 100% RE simulations in NEM
• Our previous work on relocating wind
• Application of a new (ROAM) wind data set
• Results
• Conclusions
Australian climate zones

30 degrees of latitude

The NEM
Introduction to 100% RE scenarios in the NEM

- UNSW research going since 2010

- Several phases
 - Technical feasibility
 - Economic least cost optimisation
 - Comparisons with other “reference” scenarios
 - Complete replacement of the current system (“BAU”)
 - All gas
 - Fossil fuels with CCS

- Now, how can we further reduce costs?
Optimisation with original wind data

Deep lull

Surplus
Previously optimised mix with original wind data

By capacity

Low cost

High cost

By energy

+ 8.8 TWh spilled (~4%)

+ 24.9 TWh spilled (~12%)
Previous work on wind relocation

- Current NEM wind farms are mainly in one regime
- Earlier research question: “Could relocating some of the wind capacity to another location increase the share of wind?”
- Results with a single additional Queensland site using synthetic wind data were promising
Current NEM wind farms

Windy Hill (12 MW)
ROAM wind power data set

- Hourly wind generation traces 2003-2011
- ACCESS-A wind speed data into ROAM's WEST model
- Wind power curve function applied to several sites in each polygon
- Each site normalised to 1 MW
- Weighted average calculated for each polygon
- Capacity limits (GW) given

43 polygons around the NEM, 5 (starred) chosen
Results

With more polygons, wind share grows at the expense of PV and CST, costs fall.
No major additional improvement seen with 43 polygons.
New system dispatch
(85% NSP limit)
Effect of modifying non-synchronous limit on wind penetration
Conclusions

- Conventional wisdom: need contribution from an ensemble of RE technologies
- Not necessarily: geographic diversity allows for some technology substitution
- Wind power dominates in this work due to low capital cost and capacity factors
- Limited dispersion can dramatically reduce costs and increase wind share