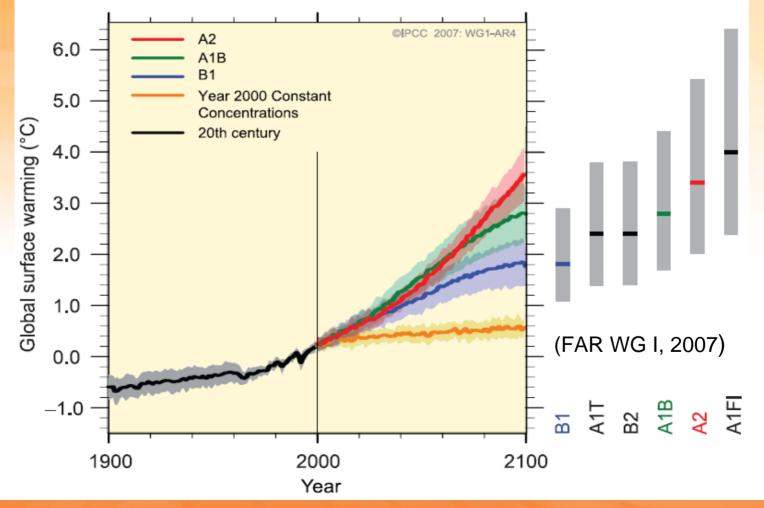
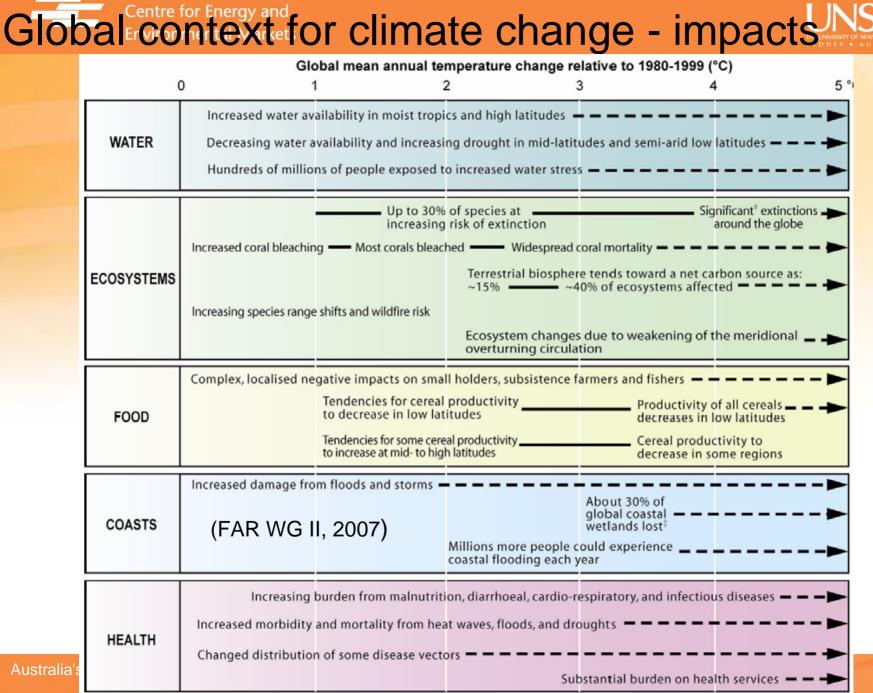


The Energy Future of Australia: What role for the Asia-Pacific Partnership on Clean Development and Climate (AP6)

Iain MacGill (Research Coordinator Engineering)

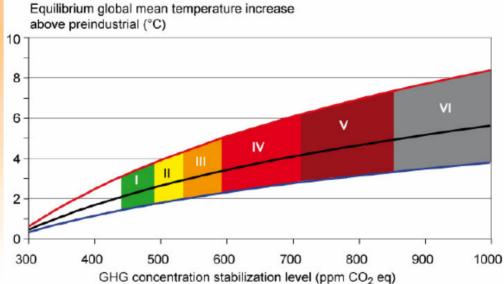
AIE Young Energy Professionals Workshop Sydney, 3 July 2007


www.ceem.unsw.edu.au



Global context for climate change - temperature

MULTI-MODEL AVERAGES AND ASSESSED RANGES FOR SURFACE WARMING



Global context for climate change - mitigation

(FAR WGIII, 2007)

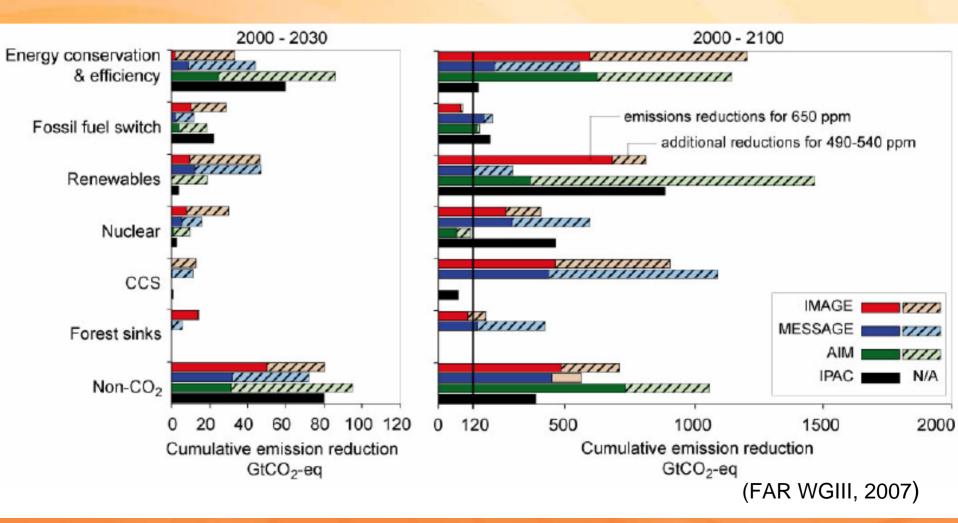
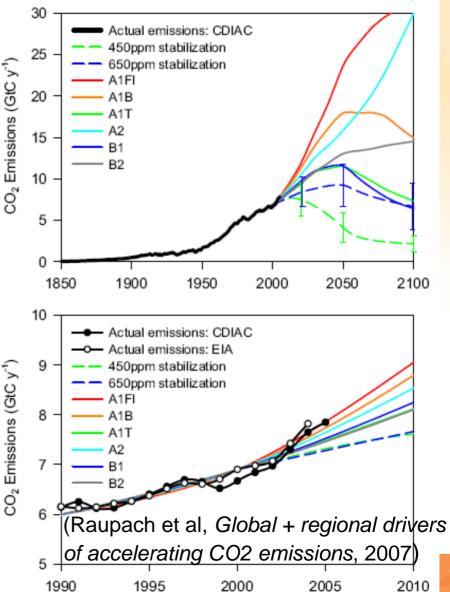

10000 01 01							
Category	Radiative Forcing (W/m ²⁾	CO ₂ Concentration ^{c)}	CO ₂ -eq Concentration ^{c)} (ppm)	Global mean temperature increase above pre-industrial at equilibrium, using "best estimate" climate sensitivity ^b , ^{c)} (°C)	Peaking year for CO ₂ emissions ^{d)} (year)	Change in global CO_2 emissions in 2050 (% of 2000 emissions) ^{d)} (%)	No. of assessed scenarios
Ι	2.5 - 3.0	350 - 400	445 - 490	2.0 - 2.4	2000 - 2015	-85 to -50	6
II	3.0 - 3.5	400 - 440	490 - 535	2.4 - 2.8	2000 - 2020	-60 to -30	18
III	3.5 - 4.0	440 - 485	535 - 590	2.8 - 3.2	2010 - 2030	-30 to +5	21

Table SPM.5: Characteristics of post-TAR stabilization scenarios [Table TS 2. 3.10]^{a)}

Global context for climate change - options



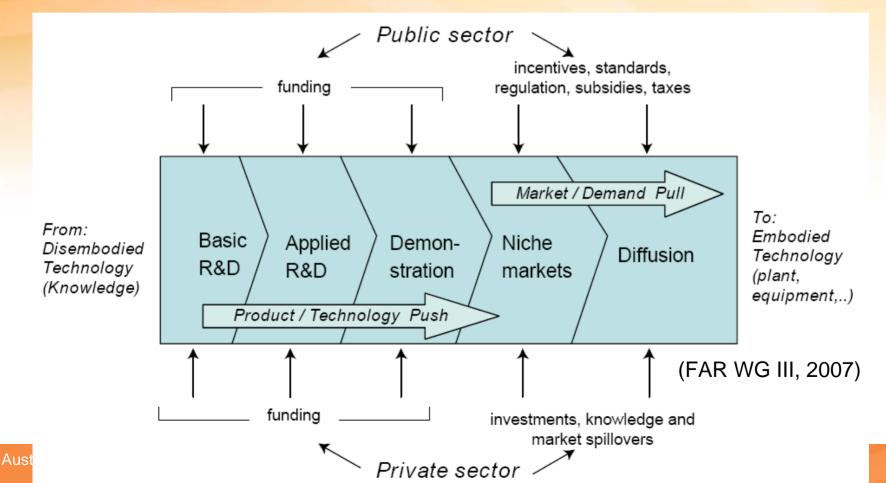
Global context for climate change – progress?

- Current emission trajectory exceeds the 'worst case' IPCC scenarios
- Considerable costs + risks in delaying emission reductions
 - technology options 20 years away need to be 3-7 times better than existing ones to be worth waiting

Australia's energy

Global context for climate change – policy needs

A coherent policy framework required


	-		
	Voluntary, regulatory and systemic instruments	Economic instruments	Innovation instruments
Behaviour			
Substitution			(Grubb, 2006)
Technical innovation			

Global context for climate change – innovation

A coherent innovation policy framework required to develop and diffuse abatement technologies

Table 13.3 Assessment of international agreements on climate change.⁴⁰

14510 1010 1		ionar agreements on e	<u> </u>	1
E Approach	Environmental effectiveness	Cost-effectiveness	Meets distributional considerations	Institutional feasibility
National emission tar- gets and in- ternational emission trad- ing (including offsets)	Depends on participa- tion and compliance.	Decreases with limited participation and re- duced gas and sector coverage	Depends on initial allo- cation	Depends on capacity to prepare inventories and compliance. De- fections weaken re- gime stability
Sectoral agreements	Not all sectors amena- ble to such agree- ments, thereby limit- ing overall effective- ness. Effectivenss de- pends on whether agreement is binding or non-binding	Lack of trading across sectors increases over- all costs, although they may be cost-effective within individual sec- tors. Competitive con- cerns reduced within each sector.	Depends on participa- tion. Within-sector com- petitiveness concerns are alleviated if treated equally at global level.	Requires many sepa- rate decisions and technical capacity. Each sector may re- quire cross-country institutions to manage agreements
Coordinated policies and measures	Individual measures can be effective; emis- sion levels may be uncertain; success will be a function of com- pliance	Depends on policy design	Extent of coordination could limit national flexibility, but may in- crease equity.	Depends on the num- ber of countries (easier among smaller groups of countries than at the global level)
Cooperation on Technol- ogy RD&Dª	Depends on funding, when technologies are developed and policies for diffusion	Varies with degree of R&D risk Cooperation reduces individual national risk	Intellectual property concerns may negate the benefits of cooperation.	Requires many sepa- rate decisions. De- pends on research ca- pacity and long-term funding
Development- oriented ac- tions	Depends on national policies and design to create synergies	Depends on the extent of synergies with other development objec- tives	Depends on distribu- tional effects of devel- opment policies	Depends on priority given to sustainable development in na- tional policies and goals of national insti- tutions
Financial mechanisms	Depends on funding	Depends on country and project type	Depends on project and country selection criteria	Depends on national institutions
Capacity building	Varies over time and depends on critical mass.	Depends on pro- gramme design	Depends on selection of recipient group	Depends on country and institutional frameworks

(FAR WG III, 2007) Australia's energy future and

^aResearch, Development and Demonstration.

Technology transfer

- Already seeing considerable funding for energy related projects in developing world
 - Increasing amount supporting sustainable energy

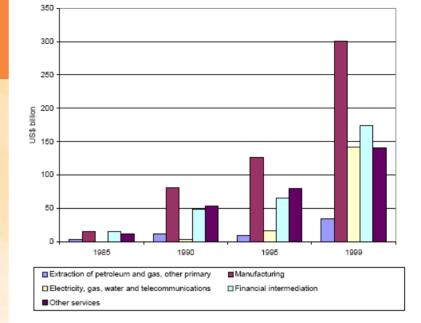


Figure 13.5 Total OECD foreign direct investment (FDI) outflows to selected sectors Source: OECD (1999)

Australia's energy Figure 13.6: Development assistance for energy Source: OECD.

Kyoto Protocol Clean Development Mechanism

- Seeing US\$billions investment in emission reductions projects in developing countries – particularly China + India
- How do financial commitments to date with AP6 compare?
 Entirely insignificant (Aust = \$100m over 5 yrs)

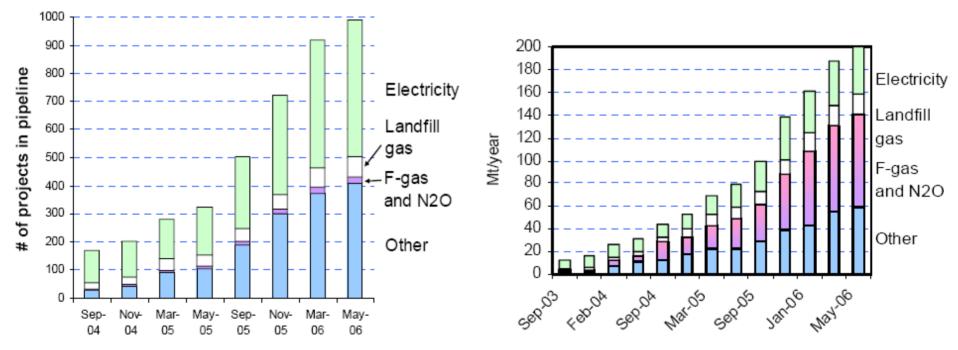
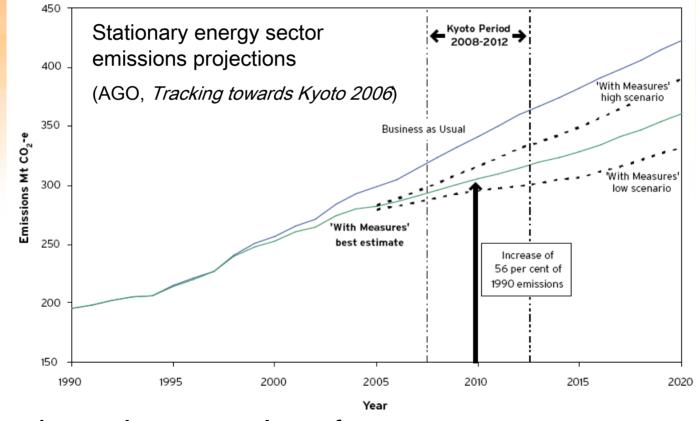


Figure 13.3 Evolution of the Clean Development Mechanism portfolio in terms of CO₂-equivalents per year and number of projects. (FAR WG III, 2007) Source: Ellis and Karousakis (2006).

The Australian energy context

- Large, low cost + high quality coal, gas and U reserves
- Major energy exporter World #1 Coal, #2 Uranium, #5 LNG
- An energy intensive economy c.f. other industrialised nations
- Amongst the world's highest per-capita greenhouse emissions


% of Global	Population	GDP	Energy Production	Energy Consumption	Fossil-fuel GHG emissions
Australia	0.3	1.3	2.3	1.0	1.3
China	21	5.4	14	15	18
India	17	1.7	4.2	5.1	4.1
United States	4.6	31	15	21	22
Japan	2.0	14	0.9	4.8	4.6
Korea	0.8	1.8	0.3	1.9	1.7
Germany	1.3	5.6	1.2	3.1	3.2
	(IEA, World Energy Statistics 2006)				

A challenging context for climate policy

- Energy-related emissions climbing 70% of total
 - Estimated +35% over 1990–2004, projected +56% in 2010

Growing volume + value of energy exports

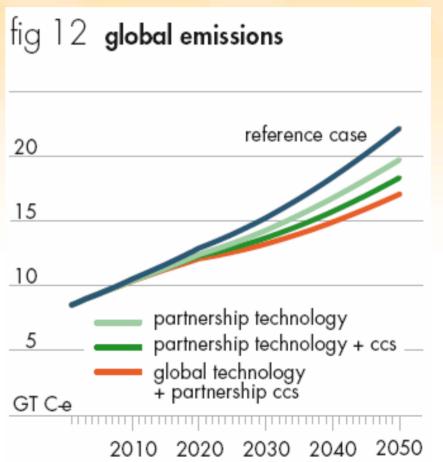
Australian climate policy framework

Federal Govt

- 108% Kyoto target; has not ratified but commitment to still meet
 - "ineffective, no action by developing countries, no US ratification"
- Advocates R&D&D of new techs. c.f. deployment of existing options although now supports emissions trading post 2012
- Key player in AP6 with US,, Japan, South Korea, China + India.
 - "Voluntary, non-legally binding framework for cooperation to facilitate development + diffusion of existing + emerging technologies + practices"
- State Govts
 - Some urging Kyoto ratification, setting aspirational longer-term targets, establishing market-based deployment schemes

The Asia Pacific Partnership

- Six countries of AP6 represent roughly half the world's population, GDP, energy consumption and greenhouse gas emissions
 - Includes world's 4 largest coal producers (China, US, India + Australia) + 2 largest coal importers (Japan + Korea). All countries in world's top ten coal consumers
 - Includes #1 (US), #3 (Japan) + #5 (South Korea) largest uranium consumers, Australia #2 uranium exporter.
- A "framework for international cooperation...to develop, deploy and transfer cleaner more efficient technologies... consistent with to our efforts under the UNFCCC... will complement but not replace the Kyoto Protocol"
 - Although Australian PM Howard: "The fairness and effectiveness of this proposal will be superior to the Kyoto Protocol."
- A technology accord
 - No binding targets, voluntary actions, major industry partnership roles, R&D & Demonstration focused without 'market-pull' policies, strong support for Carbon Capture + Storage (CCS) + nuclear technologies
 - One of many bilateral + multi-party, technology focussed, climate change partnerships between nations outside Kyoto Protocol
- Very small financial commitment to date
 - Australia: \$100m over 5 years



ABARE AP6 Scenarios

(ABARE, Technological development and economic growth, 2006)

- Assumes CCS costs of US\$25-30/tCO2 (effectively requires ETS/tax)
- Argues against a carbon price now
 - "... important to ensure that .. the necessary technologies to substantially reduce emissions actually exist and are capable of deployment before technology 'pull' policies are adopted."
- ABARE Scenarios not a sensible assessment of AP6 given funding to date, other policy efforts
 - AP6 funds 100 X smaller than other sustainable energy funding flows to developing countries

Aust. Technology R&D & Demonstration

- Climate policy emphasis on R&D & Demonstration of promising but emerging GHG techs, especially CCS
 - Research mapping geological reservoirs, CO2 capture, coal gen.
 - Important component of AP6 funding commitments (\$100m over 5 yrs)
 - Low Emission Technology Demonstration Fund (LETDF)
 - support demonstration of energy technologies with major abatement potential by 2020–2030.
 - A\$500 million over 2006 2012 intended to leverage \$1billion+ of private investment
 - Projects to date focused on CCS + advanced coal generation techs
 - Funding for emerging renewable energy technologies
- Early lessons
 - Time delay before significant abatement reductions might be achieved
 - Serious money required to drive demonstrations
 - potential project proponents calling for carbon price to make technologies commercial. Federal Govt now supports ETS for 2012

Some lessons for technology innovation

- Innovation certainly required policy question is how best to achieve it
 - Public support for R&D&D important but longer time frames + risks
 - Market-pull mechanisms incl. EE regulation, renewable targets + carbon pricing to drive deployment + increase private R&D the higher priority
- AP6 a multi-party tech-focused partnership b/n six key nations
 - Initial portfolio of AP6 projects "weighted towards sectoral assessments, capacity building, identifying best practices + tech research + demonstration"
 - Useful 'no and low regrets' outcomes possible through voluntary framework + R&D, but limited given present energy market drivers
 - Larger success of AP6 (+ all policies) depends on contribution to widespread adoption + diffusion of existing + emerging abatement techs to stabilise atmospheric GHGs at 'safe' levels

Thank you... and questions?

www.ceem.unsw.edu.au

www.ceem.unsw.edu.au