

CSIRO ISS Seminar Series CSIRO ICT Centre, 18 November 2004

Decentralised coordination of distributed power system resources using evolutionary programming

Dr Iain MacGill

Research coordinator - Engineering
Centre for Energy and Environmental Markets

Senior Lecturer

School of Electrical Engineering and Telecommunications
The University of New South Wales

i.macgill@unsw.edu.au

www.ceem.unsw.edu.au

UNSW Centre for Energy + Environmental Markets

Established...

- to formalise growing interest + interactions between UNSW researchers in Engineering, Commerce + Economics... + more
- through UNSW Centre providing Australian research leadership in interdisciplinary design, analysis + performance monitoring of energy + environmental markets, associated policy frameworks
- in the areas of
 - Physical energy markets (with an initial focus on ancillary services, spot market + network services for electricity + gas)
 - Energy-related derivative markets (financial + environmental including interactions between derivative and physical markets)
 - Policy frameworks and instruments in energy and environment
 - Economic valuation methodologies
 - Experimental market platforms and Al 'intelligent agent' techniques to aid in energy + environmental market design

Tools for assessing market design + structure

- Economics eg. general competitive market theory
- Experience with existing, similar markets
- 'Common-sense' assessment
- Mathematical analysis Cournot + Bertrand paradigms, game theory...

Experiments

- Field trials, demonstration programs
- Simulation
 - 'Trial + error' simulations to explore possible outcomes
 - Simulations guided by 'intelligent' market participants

 Experimental subjects

Intelligent software agents

The emerging electricity industry

Drivers

- Market oriented restructuring now underway in much of the world
- Growing potential of distributed resources
- Increasingly pressing environmental concerns

Outcomes for power systems

- Likely increasingly physically distributed many smallerscale generation and active demand-side resources
- More organisationally decentralised decision making devolved to far greater numbers and diversity of industry participants

Traditional power system operation

- Operation to minimise the risk-weighted cost of electricity supply to meet given demand + required level of security
 - Approximate time scales of 5 min to a year
- Challenges
 - Physical power system characteristics: supply/demand balance at all times in all locations, no cost-effective storage
 - Complex resources characteristics
 - Stochastic behaviour
 - Inter-temporal links (eg. Hydro, ramp rates)
- Analysis tools
 - Use time decomposition economic dispatch, unit commitment, fuel scheduling (inter-temporal links are key challenge)
 - LP, DP, Lagrangian Relaxation, GA....
 - => Centralised dispatch solutions for a small number of large supplyside resources

Decentralised power system coordination

- Emerging challenges with distributed resources + decentralisation
 - Potentially far greater numbers
 - Demand-side resources (eg. Load management)
 - More variable + stochastic resources (eg. Wind, PV)
 - Independent participants with individual objectives
- Options for power system operation
 - Traditional centralised control (DRs treated as uncontrolled variation)
 - Centralised control with spot pricing— DRs can self-dispatch
 - Decentralised coordination –resources can actively direct dispatch via
 - Bilateral contracting
 - Electricity spot markets
- New types of analysis tools reqd
 - Individual participant behaviour
 - Market coordination design (rules) + structure of markets

Power system model

- Resources ITLs (state), stochastic behaviour (Markov chains), aggregations
 of different plant (eg. Hydro + thermal)
- Network single bus, radial network with transport model...
- Agents control resource, communicate with coordinator, social/individual objs
- System coordinator max. declared benefits of energy trading s.t. constraints

Agent model

- b benefit function wrt control actions u
- w future benefit function wrt state x
- B combined benefit function wrt elec. flow q
- d declared benefit function wrt q

Agent model over time horizon

Solving agent/system behaviour: Evolutionary Programming

General process for evolving good solutions to problems

Dual Evolutionary Programming: evolutionary population

Dual Evolutionary Programming: evolving solutions

 Solve 'optimal' agent behaviours via repeated power system simulations, and evolution of best agent behaviours

Example: Socially optimal PS coordination

- Agents seeking to achieve system optimal operation
- => Declare true benefit functions to market coordinator

Socially optimal market coordination

 Agents' benefit functions are dispatched to max. benefits of energy trading

The challenge with resources that have ITLs

 Benefit function for energy storage depends on other system resources + behaviour over time (eg. daily load profile)

- Example: hydro generating plant with pump storage
 - Value of energy (water)
 in storage depends on
 present + future spot
 market dispatches
 (typically value declines as
 more stored energy
 available)
 - Plant may bid to buy as well as offer to sell

Participant with hydro + thermal plant

 Submit a market offer that reflects benefits of thermal plant + present value of hydro (wrt current water level)

Parameterised future value 'solution' for hydro

Evolutionary pop. of feasible agent behaviours

Solve optimal agent behaviour

 Run repeated power system simulations with evolving sets of agent behaviours to max system benefit

A simple example

• Five system storages – solar plant with thermal storage, two loads with thermal storage (one high loss), pumped hydro, battery storage

Optimal system operation

Example: socially optimal PS operation with (aggregated) stochastic PV + load storage

Modelling PV

Use markov chains linking a number of daily profile 'states'

Modelling (aggregated) load storage

 Models can include time varying electrical demand, effective storage capacities, charging rates, charging/discharging losses, leakage

Information scenarios for load agents

- None
- Knowledge of PV state => evolve two state controller
- Knowledge of other storage states => eg. low, medium, high => evolve three state controller
- Knowledge of PV and other storage state => evolve six state controller

Optimal load operation

Potential synergies between PV + load storage

Example: competitive spot markets

 Agents pursue individual profit-maximising objectives. Opportunities for strategic behaviour (ie. not submitting true benefit function) depends on market design + structure

Strategic behaviour within market	Solution techniques
None	Inspection for simple systems, LP etc for more complex problems
Single participant only (or other offers known)	Inspection for simple systems, LP etc for more complex problems
More than one participant	Game theoretic analysis for some simple problems (2-3 players) Dual evolutionary programming

Agent for a participant with 2 thermal generators

- Agent uses physical plant costs + strategic reasoning to determine market offer
 - Assume linear cost curves for gens, no inter-temporal links

Parameterised market offer 'solution' for an agent

Offer (\$/MWh)

A population of offer 'solutions' for each agent

Participants with inter-temporal links

Example: hydro generating plant with pump storage

Parameterised *future value* 'solution' for hydro agent

Population of bid/offer solutions for hydro participant

Evolve population of offer 'solutions' for each agent

Progressive tournament – 'all against best'

Agent tests and ranks its offers population against 'best' of

other agents => selecti $_{A_1}$ recombinatic $_{A_n}$ + random

variation

Next agent's turn

Tournament continues...

Studies of strategic behaviour in spot markets

- 2 generator problems
 - EP gives same answers as game theory for simple problems
 - Useful insights with problems where game theory may struggle –
 eg. if either gen can fully supply load => no Nash equilibrium
 - EP can handle networks, complex plant operation
 (if you can simulate power system operation, then can use EP)
- Multiple generators including hydro
 - Useful insights into possible participant strategies, mkt impacts
 - Results not tested against other solutions no tools available...
- Complex industry structures 5+ generators
 - Useful insights into possible participant strategies, mkt impacts
 - Results not tested against other solutions no tools available...
- Stochastic generating plant
 - Prelim. work using Markov chains to model stochastic hydro flows

Example: 2 generators including Hydro

2 + Hydro: EP Result:

2 + Hydro: EP Results – participant profits

 Surplus (profit) for participants with none, either and both undertaking strategic behaviour

Example: EP Results – 5 generators including hydro

Surplus (profit) for participants with none, one only and all using strategic behaviour

40

Summary - potential value of DEP

- Can have complex, realistic
 - resource models if you can simulate operation, you can probably find 'good' behaviour using DEP
 - objective functions risk weighted, individual, aggregated, socially optimal
 - Agents eg. Contract positions, etc
 - Complex information scenarios
 - Stochastic resources (markov chains + longer simulations)
- However
 - Computational burden can expand rapidly, particularly with stochastic resources, multiple controller states

Next steps

- ARC funded project AGSM and Elec. Engineering
 - \$250K for three years: 2004-7
 - Will explore analytical and EP tools for understanding participant behaviour in spot + derivative electricity markets

CEEM

- DEP tools for exploring market design + structure
- Comparison / validation of EP with Exptl Economics findings
- Agent support for experimental subjects with complex market designs + structures

For more information.....

www.ceem.unsw.edu.au