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ABSTRACT
Successful integration of wind power into power systems can be facilitated through better

understanding of future uncertainty in wind power generation. This paper explores a new

approach to characterizing this uncertainty using measures of the variability in the wind

speeds predicted at multiple grid points in a Numerical Weather Prediction (NWP) system.

This approach is compared to the traditional approach of using the spread from an NWP

ensemble by using two measures of uncertainty; forecast errors in single time-series

forecasts and observed temporal variability. Results show that the multiple grid point

approach has a comparable skill level to NWP ensembles for predicting these uncertainty

measures and in particular, demonstrates very good skill in predicting large forecast errors.

These results also provide a positive evaluation of a terrain standardization method

described in a companion paper. A possible extension of this work is to combine the multiple

grid point approach with NWP ensembles to improve uncertainty characterization.

1. INTRODUCTION
One of the ways to facilitate the high penetrations of wind power in a power system is to

forecast wind power for lead times of up to 48 hours. Many wind power forecasting studies to

date have focused on producing and evaluating forecasts of expected values, in the form of

single time-series forecasts, eg. [1, 2]. However, the limitations of NWP models and the

stochastic nature of the weather can give rise to large errors in such single time-series

forecasts under some conditions. The potential for large errors limits the value of single time-

series forecasts in assisting decision-making for maintaining power system security [3]. A

characterization of the future uncertainty in such forecasts can improve this situation [4].

Many wind power forecasting studies argue that the main contribution to the error in

single time-series forecasts comes from the Numerical Weather Prediction (NWP) system [5,

6]. The most widely used approach to characterize the uncertainty in NWP forecasts is to run

an ensemble of NWP forecasts to capture one or more of the major sources of uncertainty.

Some wind power forecasting studies have used NWP ensembles based on varying the initial

conditions [7, 8], while others have varied the physical model parameterizations [6, 9], both of

which require computationally expensive multiple NWP system runs. Others studies have

created ensembles using completely different NWP systems [10] or temporal ensembles [11].

However, these ensembles typically contain less than ten members, which may be too few to

sufficiently characterize the forecast uncertainty. Other methods in use to characterize wind

power forecast uncertainty include synoptic classification [4] and categorizing the non-linear



power curve into different parts [12]. This paper explores a new approach using measures of

the variability in the forecast wind speeds at multiple grid points in an NWP system. This is in

effect an NWP ensemble based on multiple grid points and does not entail any extra

computational effort since it only requires data from one NWP run.

A companion paper [13] introduced a chosen-grid-point-equivalent (cgp-equivalent)

methodology where forecast wind speeds at wind turbine hub height for multiple grid points

around a wind farm location are transformed to equivalent wind speeds that represent the

surface roughness and terrain at a chosen grid point (cgp). The cgp is chosen as the most

representative of the wind farm location. The cgp-equivalent methodology is used to develop

a visually-based decision support tool to characterize future uncertainty, particularly in

regards to large, rapid changes in wind power. The companion paper discusses how the

uncertainty sources in NWP systems mentioned above often result in the spatial

misplacement of synoptic features in the forecasts. 

This study builds on the work presented in the companion paper by providing some

evidence that misplacement errors in NWP forecasts make a significant contribution to

forecast uncertainty. Two ex-post quantities to describe forecast uncertainty are used; the

single time-series forecast error and observed temporal variability. This paper examines how

a measure of the spatial variability in NWP wind speeds could be to predict these quantities,

compared with the spread of an NWP ensemble. Neither of these quantities for measuring

forecast uncertainty are a complete measures of the underlying forecast uncertainty, which is

probably impossible to achieve. However, comparing the spatial variability with the single

time-series forecast error illustrates the significance of misplacement errors, while comparing

with temporal variability illustrates the extent to which uncertainty due to the misplacement

of moving weather features is translated into temporal uncertainty at a site. A further

outcome of this work is that comparing the spatial variability calculations made with cgp-

equivalent and raw NWP spatial fields, allows a quantitative assessment of the cgp-equivalent

methodology. 

2. DATA SOURCES
The observation data used for the results in this paper are obtained from two wind farm sites

within Australia; Yambuk (YB) and Challicum Hills (CH). Both wind farms are owned and

operated by Pacific Hydro Pty Ltd and are located in the Australian state of Victoria. Figure 1

shows the locations of the two sites and table 1 summarizes some important characteristics of

the sites. The wind speed observation data used for the wind farms is the average wind speed

measured on the wind turbine nacelles. Although it is known that wind speed observations

made with nacelle based anemometry are affected by the moving blades and the nacelle itself

[14], it has been shown that an averaged measurement from these anemometers is much more

representative wind speed for characterizing a wind farm power curve than a wind speed

measured on a met mast at or near the wind farm [15]. This is likely to be due to the benefits of

spatial smoothing. All observations are averaged to hourly values using the observation data

obtained for half an hour before and after the hour. This definition is chosen as one of the

possibilities to be representative of the NWP model forecasts, which are available on the hour,

every 3 hours.

The single time-series and spatial field NWP forecasts used for this work come from a new

NWP model developed by the Australian Bureau of Meteorology; Mesoscale Assimilation

Limited Area Prediction System (MALAPS), which went operational in December 2007.

MALAPS has a 0.1º (≈10 km) resolution in the horizontal, 61 levels in the vertical and has its

own analysis at the same resolution [16]. The system was developed partly for wind power
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forecasting applications, and at least one verification study on MALAPS includes the use of

wind power monitoring data [16]. The MALAPS data used is for 7.5 weeks from 2nd January to

24th February 2007, and 36 weeks from 1st June 2007 to 10th February 2008. For each day within

these periods, prediction horizons from 6 to 48 hours are used (available in 3-hour increments)

from each of two available MALAPS forecast runs made at 0:00 and 12:00 UTC (Coordinated

Universal Time). The total period of 10.5 months of available MALAPS data gives in excess of

8000 hourly data points for each site when combining the forecasts at multiple prediction

horizons with the available observation data. The chosen grid points (including sigma levels1)

used for each site were chosen to minimize the bias between the forecasts and the

observations. 

Table 1 presents a summary of the sites and [13] describes them in more detail. The mean

wind speeds for each site were around 8 ms-1 with a standard deviation of 3 ms-1 over the 10.5

months of data. More precise figures for these statistics could not be shown due to

confidentiality reasons and they would provide very little additional information for the

analysis in this paper.

Figure 1: Location of south eastern Australia with an inset of the particular region being studied

showing the major transmission lines and the relative locations of the two wind farm sites

(source of transmission map: [17])

The ensemble data used as a benchmark for the results is from the Multi-Scheme Ensemble

Prediction System (MSEPS), which is run by Danish company, Weprog ApS [18]. MSEPS has 75

ensemble members, which differ by the physical assumptions (parameterizations) made. The

model is currently forecasting over the Australian region with a resolution of 0.45º (≈ 45 km)

and 32 vertical levels. A concurrent data set of MSEPS wind speed forecasts for each ensemble

member at a representative grid point for each site is constructed such that the base times and

prediction horizons match with the corresponding MALAPS forecasts. Only two sigma levels1

from MSEPS were available for this study and the chosen levels (to minimize bias with the

observations) are shown for each site in table 1. The latitudes and longitudes of grid points

used for the sites were chosen by Weprog after their own analysis. Unfortunately no NWP data

set containing ensemble data at multiple grid points was available for this work.
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Table 1: Summary of main attributes for the wind farm data
Attribute YB CH
Wind farm location type Coastal Inland
Wind farm rating 30 MW 52.5 MW
Number of turbines 20 35
Site elevation (average) 35 m 470 m
Measurement height 69 m 70 m
Nearest MALAPS grid point
MALAPS latitude 38.3º S 37.4º S
MALAPS longitude 142º E 143.1º E
MALAPS sigma level 0.995 0.972
Nearest MSEPS grid point
MSEPS latitude 38.65º S 37.33º S
MSEPS longitude 142.17º E 143.09º E
MSEPS sigma level 0.996 0.988

3. DEFINTIONS OF QUANTITIES
The main conjectures under investigation in this work are concerned with evaluating the

degree of correspondence between a predictor and an ex-post measure of forecast

uncertainty. The three predictors can be summarized as follows.

1. V̂ fld,raw : A variability measure of the raw (direct model output) wind speeds

predicted at multiple grid points from MALAPS in the vicinity of a site – see equation

(1) below.

2. V̂ fld,cgpe  : As above, except on chosen-grid-point-equivalent (cgpe) wind speeds from

MALAPS (adjusted wind speeds to standardize the effects of terrain) – see equation

(1) below.

3. V̂ ens : A variability measure of the wind speeds predicted by the ensemble members

of MSEPS for a site. This is the variance (non-weighted) of the 75 wind speeds

predicted at a representative grid point for the site.

Two different measures of forecast uncertainty are used to compare the three predictors

and these are summarized as follows.

1. STDE: The standard deviation of forecast errors comparing the wind speed

observations at a site and the single time-series forecast from the MALAPS single

grid point chosen for that site – see equation (4) below.

2. V obs : A measure of the temporal variability in the observations over a 5 hour

period – see equation (5) below.

The following describes the variability measures and forecast uncertainty measures in

more detail.

A predicted wind speed field is defined as the set of wind speeds predicted at multiple grid

points at a constant sigma level in an NWP system. The spatial variability is defined as a

weighted variance of the wind speeds in the field, as in equation (1). The weighting is chosen

to decrease with distance from the chosen grid point with a cosine function, since a cosine

function depicts an assumed nature of the change in the probability of misplacement with

distance. The first zero points of the cosine function are defined at a prescribed distance above

which the weighting is zero. This prescribed distance is chosen to be 140 km, which allows for

the representation of fast moving features (of up to 70 kmh-1) in the field if they are forecast

with a timing error of up to two hours.
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(1)

where the subscripts i and j refer to a specific grid point by its latitudinal and longitudinal

position respectively, the subscript t refers to the valid time and h refers to the prediction

horizon,  Ŝ is the predicted wind speed,  Ŝ
_

w(ij),th is the weighted mean (weightings defined in

equation (2)) of the wind speeds predicted at each grid point ij, valid at time t with prediction

horizon h, and wij is the weighting of the grid point ij, and is defined by the following equation.

(2)

where

Dij,cgp is the great-circle distance in kilometers along the earth’s surface between the grid

point ij and the grid point chosen as most representative of the wind farm site (cgp). 

Many standard average time-series forecast error measures have been trialed for this

work including the root mean square error (RMSE). However, RMSE is influenced by bias and

although the chosen grid point from MALAPS minimizes forecast bias, no additional

downscaling techniques were applied to further correct for it. Hence for this study the

standard deviation of the forecast error, STDE, is used to measure single time-series forecast

error since it is independent of bias. This allows a more direct comparison between MALAPS

and MSEPS. Note, however that the results using RMSE and STDE proved to be very similar.

The absolute value of the single time-series forecast error, (ATFE), is defined in equation (3)

and STDE is defined in terms of ATFE in equation (4). 

(3)

where

Ŝ 
cgp,th is the wind speed forecast at the chosen grid point, cgp, to represent the site that is

valid at time t, with prediction horizon h.

(4)

where

B is a subset of the forecast data and NB is the total number of data in B, and t,h ∈ B refers

to all forecasts valid a time t, with a prediction horizon h, that belong to the set B.

The observed temporal variability in wind speed, Vobs, is calculated every 3 hours to

coincide with the available MALAPS forecast data. Vobs is calculated as the standard deviation

of 5 consecutive hourly wind speed observations from 2 hours before to 2 hours after the 3-

hourly time stamp of the MALAPS data, as shown in equation (5). Although this definition is

independent of the chronology of the 5 observations, this definition matches more closely the

above definitions of spatial variability and ensemble spread.
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(5)

where 

(6)

The main method used to compare the three predictors involves converting them to

categorical forecasts and then using standard categorical forecast skill scores. In this work the

forecast categories are “yes” or “no”, referring to whether the forecast uncertainty (ATFE or

Vobs) exceeds a particular threshold or not. To assign categories for the predictor data, we

need to select the number of predictor data that will be assigned to the “yes” category, starting

from the largest predictor value. We have selected this number to be three times the number

of data for which the forecast uncertainty exceeds the threshold. The multiplier of three was

chosen after trialing several multipliers between one and four, as three gave the best skill

scores. Note that many occurrences of forecast uncertainty above the threshold may still be

classified in the “no” category. Some of the experiments are for predicting the forecast

uncertainty to be below a particular threshold and in this involves a similar methodology. The

skill scores to evaluate categorical measures chosen for this paper are the Probability of

Detection (POD), False Alarm Ratio (FAR) and Odds Ratio Skill Score (ORSS). POD and FAR

are the most common categorical error measures used in weather forecasting and are

described in many publications, including [19]. POD is the fraction of “yes” forecasts that are

correct and FAR is the fraction of “yes” forecasts where the event did not occur. ORSS is

described in detail in [20], and measures the odds of a “yes” forecast being right to the odds of

a “yes” forecast being wrong. ORSS has the advantage that it can be used to directly compare

forecasts of events with different probabilities. Categorical forecasts are starting to be used

for the evaluation of forecasts of large changes in wind power, eg. [21]. POD was used in [3] and

POD, FAR and a version of ORSS were used in [6].

To test for significance, a Monte Carlo test at the 1% level [22] provides a useful comparison.

A Monte Carlo test makes the assumption that the data is from a certain distribution and seeks

to identify where the data item lies in that distribution. It involves producing a set of random

results through independent random sampling from that distribution. A Monte Carlo test at

the 1% level involves selecting the random result that is better than 99% of all random results

in the set. If the result using observed data is better than the 1% level random result then it is

said that the Monte Carlo test result is significant at the 1% level. 

The results in this paper are essentially concerned with comparing the rank of the

predictors with forecast uncertainty. Hence, for the Monte Carlo test, each random result uses

a random permutation of the rank of the data. [22] describes how 500 random results are

enough to perform an acceptable test at the 1% level. To be conservative, 1000 random results

were generated for all Monte Carlo tests in this paper. Hence, all Monte Carlo 1% level results

shown in this paper are the 10th best value from 1000 random results produced from 1000

predictors using random ranking orders.

4. HYPOTHESES
The hypotheses assessed in this paper are numbered as follows, along with the tests used in

this paper to provide evidence for each. In the context of this paper, degree of correspondence
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means that the larger the values of the predictors, the higher the probability that the forecast

uncertainty is large (and visa versa).

1. Misplacement of weather features in NWP forecasts is a significant source of

forecast uncertainty.

a. V̂ fld,cgpe has a degree of correspondence with temporal variability, Vobs, that is

significant compared with a Monte Carlo 1% test. If true, this indicates that a

significant amount of spatial variability in the wind is translated to temporal

variability observed at a site.

b. The NWP ensemble spread, V̂ ens, has a degree of correspondence with V obs

that is significant compared with a Monte Carlo 1% test. If true, this indicates

that a significant amount of variability between the NWP ensemble members

stems from misplacing weather features with a high spatial variability in the

wind.

c. V̂ fld,cgpe has a degree of correspondence with ATFE that is significant

compared with a Monte Carlo 1% test.

d. V̂ fld,cgpe has a degree of correspondence with ATFE that is comparable

toV̂ ens .

e. Large values of V̂ fld,cgpe have a strong correspondence with large values of

ATFE. V̂ ens and the Monte Carlo 1% level are used for comparison. The

hypothesis here is that a significant number of large single time-series forecast

errors are due to the misplacement of large spatial variability in the wind.

2. The terrain standardization method from the companion paper [13] performs well in

transforming the wind speeds at multiple grid points to equivalent values that

correctly represent the terrain at the chosen grid point.

a. V̂ fld,cgpe has a stronger degree of correspondence with forecast uncertainty

(either measure) than  V̂ fld,raw since  V̂ fld,cgpe only depends on spatial

variability due to the weather across a region while V̂ fld,raw also includes

terrain-related effects on spatial variability.

b. Given that there is a significant relationship between forecast uncertainty and

the spatial variability due to the synoptic weather phenomena, V̂ fld,cgpe should

provide a more useful improvement over V̂fld,raw in distinguishing large values

of forecast uncertainty, than for distinguishing small values of forecast

uncertainty. A large spatial variability implicitly implies that there are strong

wind speeds in the field, and values of V̂ fld,cgpe  are likely to differ more greatly

from  V̂ fld,raw in these cases since the terrain will have a larger contribution to

V̂fld,raw . Conversely, small values of  V̂fld,raw are likely to occur when most wind

speeds in the field are quite weak and near zero. In this case the terrain

standardization is not likely to affect the wind speeds much and V̂ fld,cgpe will

also have a small value. 

5. RESULTS AND DISCUSSION
5.1. Absolute single time-series forecast error (ATFE)
This section compares the performance of the various predictors in forecasting the absolute

single time-series forecast error (ATFE). We first assess a general rank correlation statistic

between the predictors and ATFE and then assess the ability of the predictors to distinguish

between very large and very small values of ATFE.
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The degree of correspondence between two data sets can be calculated using Kendall’s

ranked correlation statistic, τ [23]. τ has a value between -1 and 1, where 1 means that the rank

orders of the two data sets are exactly the same, and -1 where the ranks are exactly opposite.

In between -1 and 1, the value for _ . is linearly related to the number of inversions of pairs of

objects required to transform the rank of one data set into the rank of the other. The statistic is

calculated between each of the three predictors and ATFE using the method described in [24],

and the results are shown in table 2. The Monte Carlo 1% test result is also shown and has a

value less than half of all the values for the predictors indicating that they all have a significant

degree of correspondence (hypothesis 1.c). V̂ ens gives the largest correlation at each site by

around 0.02. However compared to the difference between the correlations for all predictors

and the Monte Carlo results, the results for the three predictors could be considered

comparable (hypothesis 1.d). V̂ fld,cgpe gives a larger value compared with V̂ fld,raw for YB but

not for CH giving an inconclusive evaluation of the terrain standardization procedure

(hypothesis 2.a). However, these correlations are very similar compared with the other values

in the table. Furthermore, overall ranked correlations with forecast uncertainty may not be

the best way to test hypothesis 2 since the terrain standardization procedure is only expected

to improve the correlation for large values of forecast uncertainty. As explained in hypothesis

2.b, a large spatial variability implicitly implies that there are strong wind speeds in the field,

and values of V̂fld,cgpe are likely to differ more greatly from V̂fld,raw when there are strong wind

speeds in the field since the terrain will have a larger contribution to V̂ fld,raw .

Table 2: Kendall’s correlation coefficients between predictors and ATFE at each site
Predictor YB CH
V̂ fld,raw 0.088 0.080
V̂ fld,cpge 0.089 0.078
V̂ ens 0.107 0.098
Monte Carlo 1% test 0.017 0.017

Figure 2 presents a cumulative STDE plot, which shows how the three predictors compare

in distinguishing the largest single time-series forecast errors from MALAPS at Yambuk. The

V̂ fld,raw plot, for example, is constructed by sorting the data on V̂ fld,raw from the largest to

smallest values. Then the data with the 300 largest values are taken to define a subset B and

STDEB is calculated as described by equation (4) to obtain the left-most value in the V̂ fld,raw

plot. Successive cumulative subsets are taken in hundreds (eg. the 400 largest values, then 500

largest values, and so on) and STDEB is calculated for each to produce the entire V̂ fld,raw plot.

The bar plot in figure 2 indicates the number of data used in each cumulative subset of data.

The STDE values for each predictor converge to the overall STDE of around 2.4 ms-1 when all

data is used. The upper and lower x-axes show the minimum values for some subsets for the

predictors V̂ fld,cgpe and V̂ fld,raw, respectively.

The cumulative STDE plot is a good test for many of the hypotheses as described in the

previous section. Firstly, all three variability predictors give significantly larger values for

STDE compared with the Monte Carlo 1% level indicating a significant degree of

correspondence (hypothesis 1.c). Next, the x-axes in figure 2 show that the terrain

standardization procedure has reduced the overall wind speed variability in the fields since

V̂ fld,raw has consistently larger values than V̂ fld,cgpe. Furthermore, the largest values of V̂ fld,cgpe

give much larger values for STDE than V̂ fld,raw, showing that the cgp-equivalent field is better

able to discriminate large errors (hypothesis 2.b). The two plots do not converge until around

2600 data (32%) are used. Also, the V̂ fld,cgpe  plot shows comparable values of STDE compared

with V̂ens  with slightly larger values for the first 1800 data (22%). This excellent result is a good
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indication that hypotheses 1.d and 1.e are valid. It must be reiterated however, that the

difference in the results between V̂ fld,cgpe  and V̂ ens is due to a combination of factors including

the fact that variations in the ATFE are partly due to specific attributes of MALAPS and the

ensemble spread of MSEPS cannot characterize that component of the uncertainty by design.

V̂ ens does however provide a good benchmark comparison.

Figure 2: Cumulative STDE at Yambuk. The data is sorted from largest to smallest values of each

predictor and a cumulative selection of the data is taken to calculate STDE. The grey bars

show the amount of data used for each value on the curves. The x-axes show the minimum

values of V fld,raw or V fld,cgpe of the relevant subset of the data for a few cases

Figure 3 shows the POD, FAR and ORSS results for Yambuk using the predictors to

categorically forecast ATFE to be above a threshold. For example, an ATFE of magnitude

greater than 5 ms-1 occurs 367 times, corresponding to a frequency of 4.5%.  The plot shows that

V̂fld,cgpe  has marginally the best results for predicting the occurrence of this event and predicts

41% of the events correctly (POD), 86% of the predictions made are false alarms (FAR) and the

ORSS is 0.67. These are considered reasonable results for what is a difficult prediction to make.

One of the reasons the FAR is quite large is that the values of the predictors used are related to

the probability of large values of ATFE rather than a direct prediction of a large ATFE. There

will be some times where the predictor value is large but ATFE is small because the forecast

was “lucky”. The plots show that all of the variability predictors outperform the Monte Carlo

1% level indicating significant forecast skill (hypothesis 1.c). Although the POD decreases and

the FAR increases with rising threshold, the ORSS increases as well indicating that the skill

level is improving with the more extreme, rarer event (hypothesis 1.e). As with figure 2, these

plots also show an improvement in performance using V̂ fld,cgpe  compared with  V̂ fld,raw

(hypothesis 2.a), and the level of improvement increases with rising threshold (hypothesis

2.b). The performance of V̂ fld,cgpe  is also comparable with V̂ fld,ens (hypothesis 1.d). All these

points are consistent with the hypothesis that misplacement provides a significant

contribution to large single time-series forecast errors (hypothesis 1).
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Figure 3: POD and FAR (left) and ORSS (right) for the three predictors and the Monte Carlo 1% level

for predicting ATFE to exceed various thresholds at Yambuk wind farm

The cumulative STDE plot for Challicum Hills is shown in figure 4. The comparison of the

predictors for Challicum Hills with the Monte Carlo 1% level (hypothesis 1.c) and the

comparability between V̂ fld,cgpe  and  V̂ fld,ens (hypothesis 1.d) are as convincing as for Yambuk.

While  V̂ fld,cgpe still provides an improvement over V̂ fld,raw (hypothesis 2.b) the performance of

V̂ fld,raw is much better than at Yambuk. This might be due to the fact that the domain used for

CH is almost all land thereby giving weaker wind speeds overall and hence less spatial

variability due to terrain than for Yambuk where half of the domain is ocean. Figure 4 shows

some evidence for the spatial variability being less for the CH field, since the largest V̂ fld,raw

values shown on the x-axis for CH is a relatively small value of 6.7 ms-1 compared with 11.2 ms-

1 for YB. 

Figure 4: Cumulative STDE for Challicum Hills. Data sorted as in figure 2
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The POD, FAR and ORSS results are shown for CH in figure 5. The results show that similar

performances to YB are achieved at CH with some consistency with the difference in results

observed in the cumulative STDE plot. For CH, the ORSS with V̂ fld,cgpe  for the 5 ms-1 threshold

is a bit less then for YB at 0.58. 

Figure 5: As in figure 3 except for Challicum Hills

Along with forecasting periods of large uncertainty, we can also study the ability of the

predictors to distinguish periods when the single time-series forecasts will be more accurate

than usual. Figure 7 shows the cumulative STDE plots for Yambuk and Challicum Hills

equivalent to figure 2 except that the data is sorted on the predictors from smallest to largest.

The figure shows how the three predictors compare in distinguishing the smallest single time-

series forecast errors from MALAPS. As with large errors, all results are significantly better than

the Monte Carlo 1% level (hypothesis 1.c). The values for V̂fld,cgpe  are comparable with V̂ens  at YB

(hypothesis 1.d) but the results for V̂ fld,cgpe  are not so good at CH. The performance of V̂ fld,cgpe is

similar or a little worse than  V̂ fld,raw  at YB and in the case of CH  V̂ fld,cgpe performs considerably

worse in distinguishing small errors than V̂ fld,raw  (however in this case using RMSE instead of

STDE showed the opposite result). The ORSS values for all sites (plots not shown) are around 0.1

to 0.2 and do not increase with rarer events (smaller error thresholds). The POD and FAR results

are close to identical for all predictors at all sites. These ordinary results give some further

evidence for hypothesis 2.b.

Figure 6: Cumulative STDE plot for Yambuk (left) and Challicum Hills (right) as in figure 2 except

sorting on the predictors from smallest to largest and the x-axes show maximum values
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5.2. Temporal variability (V obs )
In this section, the performances of the various predictors are compared with respect to their

ability to forecast occurrences of extreme values in temporal variability, V obs  , as described by

equation (5) in section 3. Unlike ATFE, which is based on the MALAPS single time-series

forecast, V obs is based solely on observations, giving MSEPS and MALAPS equal conditions on

which to compare results. However, the field variability and ensemble spread techniques still

cannot be directly compared since the differences in the results are also due to differences

between the NWP systems. As in the previous section, Kendall’s rank correlation is used to

compare the predictors along with the cumulative plot and categorical forecast scores to

study the ability of the predictors to distinguish very large and very small values for V obs.

Kendall’s ranked correlations between the predictors and V obs are shown in table 3. As

with ATFE, all predictors give correlations significantly larger than the Monte Carlo 1% values

(hypotheses 1.a and 1.b). The correlations are larger for most of the predictors than they were

for ATFE indicating a stronger degree of correspondence. In this case,  V̂ fld,cgpe gives a smaller

value than V̂ fld,raw for YB and a larger value for CH, which is opposite to ATFE. However, as for

ATFE, the values are close and hence the change may not be significant. For V obs, V̂ ens gives

the strongest correlation for both sites and is more than double the  V̂ fld,cgpe value at YB.

Table 3: Kendall’s correlation coefficients between predictors and Vobs at each site
Predictor YB CH
V̂ fld,raw 0.092 0.119
V̂ fld,cgpe 0.077 0.130
V̂ ens 0.198 0.181
Monte Carlo 1% test 0.017 0.017

The cumulative V obs plots for YB and CH are shown in figure 7. As with the correlations, all

results are considerably better than the Monte Carlo 1% level. The plots show that V̂ fld,cgpe

provides an improvement over V̂ fld,raw in distinguishing large values of V obs at both sites

(hypothesis 2.b). However, while V̂ fld,cgpe  is comparable with V̂ ens at CH, V̂ ens performs

considerably better than V̂ fld,cgpe at YB. Similar results are discernible in the POD, FAR and

ORSS scores for predicting V obs to be above different thresholds as shown in figure 8 for YB

and figure 9 for CH. All the scores are much better than the Monte Carlo 1% level but are not

quite as good as for predicting large values of ATFE. One exception to this is that V̂ ens achieves

similar ORSS scores (around 0.7) at YB for each measure of forecast uncertainty (compare

figure 8 and figure 3).

Figure 7: Cumulative Vobs plot for Yambuk (left) and Challicum Hills (right) as in figure 2 except the

temporal variability Vobs, is calculated for each bin instead of Vfld
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Figure 8: POD and FAR (left) and ORSS (right) for the three predictors and the Monte Carlo 1% level

for predicting Vobs to exceed various thresholds at Yambuk wind farm

Figure 9: As in figure 8, except for Challicum Hills

Figure 10 shows the cumulative V obs plots for YB and CH after sorting on the predictors from

smallest to largest. As with the equivalent plots for ATFE (figure 6), these show less

consistency in the difference between V̂ fld,cgpe and V̂ fld,raw . V̂ ens gives a much better

performance than the other predictors at YB but they are more similar at CH. However, V̂ens

gives better scores for POD, FAR and ORSS (not shown) at both sites. The ORSS scores for V̂ens

are mostly less than 0.4, which is not as good as for predicting large values V obs and is a similar

result as for predicting ATFE. 

Figure 10: Cumulative Vobs plots at Yambuk (left) and Challicum Hills (right) for after sorting on the

predictors from smallest to largest
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The above results might have been examined in other ways. One option would be to use a

power curve to convert all the forecast wind speeds to wind power for each wind farm and

compare the wind power forecasts with observations of wind power. This method was trialed

and achieved similar results and conclusions to using wind speed. Wind speed was chosen for

the results in this paper since it removes one source of uncertainty for evaluating the new

techniques.

We have also tested alternative measures of the field variability (and the ensemble

spread). These included using kurtosis instead of the variance and converting the wind speeds

to a form of wind energy flux (related to the cube of the wind speed) before calculating the

variance. The results using these methods gave smaller categorical forecast scores than the

results shown in this paper. 

[15] presents a more comprehensive study of the work in this paper and includes results for

four sites instead of two.

6. CONCLUSIONS
This paper has described a theory and methodology for using the variability in forecast wind

speeds at multiple grid points in Numerical Weather Prediction (NWP) systems to predict the

uncertainty in future wind power generation. The theory is based on the concept that a major

source of uncertainty in NWP forecasts arises from potential misplacement of weather

features relative to the physical world. In essence, the method produces an ensemble of

forecasts from only one run of one NWP system, and therefore has a small computational

burden compared to conventional ensemble approaches. The effectiveness of this new

approach has been assessed relative to a standard NWP ensemble and Monte Carlo

significance tests. 

The results in this paper show that the spatial variability of wind speeds in an NWP system

can give a useful characterization of uncertainty in future wind power. A weighted variance

of chosen-grid-point-equivalent (cgp-equivalent) wind speed forecasts from multiple grid

points in an NWP system (V̂ fld,cgpe) has been shown to have a significant degree of

correspondence with forecast errors in single time-series forecasts at a location of interest.

This correspondence is comparable to that achievable with an NWP ensemble spread. In

particular, V̂ fld,cgpe provides a good probabilistic forecast for large forecast errors, again

comparable to an NWP ensemble spread. Similarly, V̂ fld,cgpe and the ensemble spread were

shown to have a significant degree of correspondence with observed temporal variability,

although in this case the ensemble spread appeared to significantly outperform V̂ fld,cgpe at one

site. Both V̂ fld,cgpe and the spread from an NWP ensemble spread may have some skill in

providing probabilistic forecasts of small errors in single time-series forecasts or when there

are small amounts of temporal variability, but the performance is not as good as for

forecasting large values of these two quantities. All these results provide plausible evidence of

a relationship between misplacement of weather features and forecast uncertainty from an

NWP system.

In addition to the above, by comparing the spatial variability in raw and cgp-equivalent

NWP fields, this work has shown that the terrain standardization method appears to perform

well in removing spatial variability in wind speed forecasts due to the terrain. As such it can

enhance to value of assessing wind speeds at grid points around the location of interest in

order to better characterise the uncertainty of the forecast at this location.

A useful future study would be to compare the spatial variability and ensemble variability

using the same NWP system to allow a more direct comparison. Other further work could be

to use the difference between the cgp-equivalent wind speed forecasts at each grid point and
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the chosen grid point forecast to predict the sign (as well as likely magnitude) of the single

time-series forecast error, if this information would be useful for forecast users. Also, since

NWP ensembles and the multiple grid point approach characterize forecast uncertainty from

two different perspectives, the results in this paper suggest the possibility of combining these

two approaches to make a more superior characterization of the uncertainty in future wind

power than from using either method alone.
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