

Centre for Energy and Environmental Markets

Experience with Market-Based Ancillary Services in the Australian National Electricity Market

Stuart Thorncraft, <u>s.thorncraft@ieee.org</u> IEEE PES GM, Tampa Florida, USA, June 24-28 2007 <u>www.ceem.unsw.edu.au</u>

www.ceem.unsw.edu.au

Centre for Energy and Environmental Markets UNSW

Outline

- brief overview of Australian National Electricity Market (NEM)
- key features & design choices of the NEM marketbased ancillary service arrangements
- outcomes of the market-based ancillary services to date
- comment on strengths & weaknesses

Ancillary Services in the NEM

Frequency Control Ancillary Services (FCAS)

maintain frequency close to 50Hz

Centre for Energy and

- market-based arrangements commenced Sept. 2001
- Network Control Ancillary Services (NCAS)
 - management of voltage magnitude & network power flows
 - non-market AS (long-term contracts)
- System Restart Ancillary Services (SRAS)
 - restart the system (or part thereof) following blackout
 - non-market AS (long-term contracts)

Experience with Market-Based Ancillary Services in the Australian NE

Centre for Energy and Environmental Markets

8 Frequency Control AS Markets

Service class	Service name	Description	
regulation	regulation raise	continuous correction of small freq. deviations – AGC manages it	
	regulation lower		
contingency	raise 6s (fast raise)	arrest a large frequency deviation –	
	lower 6s (fast lower)	governor response & under-frequence load shedding	
	raise 60s (slow raise)	stabilise and commence correction of frequency following large frequency deviation	
	lower 60s (slow lower)		
	raise 5m (delayed)	response to return the system to the	
	lower 5m (delayed)	normal frequency band – rapid unit loading & unloading	

Experience with Market-Based Ancillary Services in the Australian NEM

Setting FCAS Requirements

Service class	Service name	Requirement setting process	
regulation	regulation raise & regulation lower	Set on a trial & error basis where each month the performance of the system is assessed and levels increased accordingly.	
contingency	raise 6s, 60s, 5m	Based on the largest generator contingency less an allowance for load relief. For 5m trade-off between raise regulation.	
	lower 6s, 60s, 5m	Based on the largest load block that could fail less an allowance for load relief. For 5m trade-off between lower regulation.	

global requirements & local requirements

UNSW

source: Intelligent Energy Systems

FCAS participation

- generally more participants have installed necessary control systems & entered into the FCAS markets
- rebidding in FCAS occurs frequently gaming vs. management of technical issues?

Fuel source	Raise regulation average enablement (%)	Lower regulation average enablement (%)	Raise contingency average enablement (%)	Lower contingency average enablement (%)
Black Coal	45%	38%	43%	43%
Brown Coal	19%	9%	16%	16%
Hydro	31%	45%	36%	36%
Gas / Oil	5%	8%	6%	6%

calculated for calendar year 2006

Experience with Market-Based Ancillary Services in the Australian NEM

Strengths

- arrangements have resulted in very low FCAS costs
- very few incidents where frequency standards have been breached
- generally a robust set of arrangements that have worked during large disturbances (e.g. Jan 16 '07)
- clear assignment of roles, responsibilities & principles
- processes in place to improve efficiency of existing arrangements where possible
- services offered by broad different types of generators (hydro, gas-fired, coal-fired)

Experience with Market-Based Ancillary Services in the Australian NEM

Centre for Energy and Environmental Markets

Weaknesses

- only market-based arrangements exist for frequency control (e.g. voltage & other ancillary service markets could be envisaged)
- arrangements have increased complexity of spot market trading
- mismatch between FCAS model & physical reality
- boundary issues between services & market vs. AS
- minimal demand-side participation & generators connected to the LV portion of grid
- Iack of hedging instruments for FCAS

